//https://img2018.cnblogs.com/blog/1646268/201908/1646268-20190806114008215-138720377.jpg

高等数学——高阶导数

高阶导数

\(y=x^{3}\)

\(y'=3x^{2}\)

\(y''=6x\)

\(y'''=6\)

\[y'=\frac{dy}{dx} \]

\[y''=\frac{d}{dx}\left(\frac{dy}{dx}\right)=\frac{d(\frac{dy}{dx})}{dx} \]

\[y''=\frac{d^{2}y}{dx^{2}} \]

\[y'''=\frac{d}{dx}[\frac{d}{dx}\left(\frac{dy}{dx}\right)]=\frac{d}{dx} \left(\frac{d^{2}y}{dx^{2}}\right)=\frac{d^{3}y}{dx^{3}} \]

\[y^{(4)},y^{(5)},\dots,y^{(n)} \]

\[(x^{\mu})^{(n)}=\mu(\mu-1)\times \dots \times(\mu-n+1)x^{\mu-n} \]

\[(u+v)^{n}=\sum_{k=0}^{n}C_{n}^{k}u^{n-k}v^{k} \]

\[(uv)^{(n)}=\sum_{k=0}^{n}C_{n}^{k}u^{(n-k)}v^{(k)} \]

上面两个公式可以联系一下,展开后的形式都是一样的。

posted @ 2023-07-12 17:23  北烛青澜  阅读(57)  评论(0编辑  收藏  举报