//https://img2018.cnblogs.com/blog/1646268/201908/1646268-20190806114008215-138720377.jpg

高等数学——极限运算法则

极限的运算法则

定理1:两个无穷小的和是无穷小,有限个无穷小的和还是无穷小。

定理2(重要):有界函数与无穷小的乘积是无穷小。

有界函数如 \(\sin,\cos\)

推论1:常数乘无穷小还是无穷小。

推论2:有限个无穷小的乘积还是无穷小。

定理3:\(\lim f(x)=A,\lim g(x)=B\)

\[\lim[f(x)\pm g(x)]=\lim f(x) \pm \lim g(x)=A\pm B \]

上面的 \(x\) 要趋向同一值,且两个极限都要存在。

\[\lim[f(x)\cdot g(x)]=\lim f(x)\cdot \lim g(x) \]

\[\lim \frac{f(x)}{g(x)}=\frac{\lim f(x)}{\lim g(x)} (B\ne 0) \]

前两个式子都可以推广到有限个的极限运算。

推论1:如果 \(\lim f(x)\) 存在,有常数 \(c\),那么:

\[\lim [cf(x)]= c\lim f(x) \]

推论2:如果 \(\lim f(x)\) 存在,而 \(n\) 为正整数,那么:

\[\lim[f(x)]^{n} = [\lim f(x)]^{n}. \]

定理4:将上面的定理推广到数列。

定理5:如果 \(\varphi(x)\ge \psi(x)\),而 \(\lim \varphi(x)=A,\lim \psi(x)= B\),那么 \(A\ge B\).

posted @ 2023-07-10 19:53  北烛青澜  阅读(278)  评论(1编辑  收藏  举报