PCA历程详细python代码(原创)

  1 #PCA主成分分析,原文为文末的链接,代码为自己亲自手码
  2 
  3 def cov_out1(dx,dy):
  4   #第一步:求解x,y各自的均值
  5   mean_x=0
  6   mean_y=0
  7   for i in range(len(dx)):
  8     mean_x+=dx[i]
  9     mean_y+=dy[i]
 10     # print(i)
 11   mean_x/=len(dx)
 12   mean_y/=len(dy)
 13   # print('mean_x:',mean_x)
 14   # print('mean_y:',mean_y)
 15   #第二步:求解xy的联合均值
 16   mean_xy=0
 17   for i in range(len(dx)):
 18     mean_xy+=dx[i]*dy[i]
 19   mean_xy/=len(dy)
 20   # print('mean_xy',mean_xy)
 21   
 22   return mean_xy-mean_x*mean_y
 23 #
 24 
 25 def cov_out2(dx,dy):
 26   #第一步:求解x,y各自的均值
 27   mean_x=0
 28   mean_y=0
 29   for i in range(len(dx)):
 30     mean_x+=dx[i]
 31     mean_y+=dy[i]
 32   mean_x/=len(dx)
 33   mean_y/=len(dy)
 34   # print('mean_x:',mean_x)
 35   # print('mean_y:',mean_y)
 36   #第二步:求解联合均值
 37   mean_x_y=0
 38   for i in range(len(dx)):
 39     mean_x_y+=(dx[i]-mean_x)*(dy[i]-mean_y)
 40   # print('mean_x_y',mean_x_y)
 41   return mean_x_y/len(dx)
 42 #
 43 
 44 dx=[2.5,0.5,2.2,1.9,3.1,2.3,2.0,1.0,1.5,1.1]
 45 dy=[2.4,0.7,2.9,2.2,3.0,2.7,1.6,1.1,1.6,0.9]
 46 # print(len(dx))
 47 # print(len(dy))
 48 
 49 # covx=cov_out2(dx,dx)
 50 # covy=cov_out2(dy,dy)
 51 # print(covx)
 52 # print(covy)
 53 
 54 # cov1=cov_out1(dx,dy)
 55 # cov2=cov_out2(dx,dy)
 56 # print(cov1)
 57 # print(cov2)
 58 
 59 import numpy as np
 60 
 61 
 62 #第一步:求dx,dy的平均值
 63 print('第一步:求dx,dy的平均值')
 64 mean_x=np.mean(dx)
 65 mean_y=np.mean(dy)
 66 print(mean_x,mean_y)
 67 
 68 #第二步:求解DataAjust
 69 print('第二步:求解DataAjust')
 70 dx=dx-mean_x
 71 dy=dy-mean_y
 72 print(dx)
 73 print(dy)
 74 DataAdjust=np.vstack((dx,dy))
 75 print(DataAdjust.T)
 76 
 77 covx=cov_out2(dx,dx)
 78 covy=cov_out2(dy,dy)
 79 covxy=cov_out2(dx,dy)
 80 covyx=cov_out2(dy,dx)
 81 print(covx)
 82 print(covy)
 83 print(covxy)
 84 print(covyx)
 85 
 86 #第三步:求解特征值和特征向量
 87 print('第三步:求解特征值和特征向量')
 88 cov=np.array([[covx,covxy],[covyx,covy]])
 89 print(cov)
 90 
 91 a,b=np.linalg.eig(cov)
 92 print('特征值')
 93 print(a)
 94 print("特征矩阵")
 95 print(b)
 96 
 97 #第四步:将特征值由大到小排序,选取其中最大的k个(这里是1个)
 98 print('第四步:将特征值由大到小排序,选取其中最大的k个(这里是1个)')
 99 a_max=np.max(a)
100 print(a_max)
101 a_index=np.where(a==a_max)[0][0]
102 print(a_index)
103 b_max=b[:,a_index]
104 print(b_max)
105 
106 #第五步:将样本点投影到选取的特征向量上
107 print('第五步:将样本点投影到选取的特征向量上')
108 finalData=np.dot(DataAdjust.T,b_max)
109 print(finalData)

引文:http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020209.html

posted on 2018-11-07 14:54  周健康  阅读(1670)  评论(0编辑  收藏  举报

导航