tf.nn.in_top_k原理探究
1 import tensorflow as tf; 2 3 A = [[0.8,0.6,0.3], [0.1,0.6,0.4],[0.5,0.1,0.9]] 4 B = [0,2,1]5 out = tf.nn.in_top_k(A, B, 2) 6 with tf.Session() as sess: 7 sess.run(tf.initialize_all_variables()) 8 print(sess.run(out))
tf.nn.in_top_k组要是用于计算预测的结果和实际结果的是否相等,返回一个bool类型的张量,
tf.nn.in_top_k(prediction, target, K):
prediction就是表示你预测的结果,大小就是预测样本的数量乘以输出的维度,类型是tf.float32等。
target就是实际样本类别的标签,大小就是样本数量的个数。
K表示每个样本的预测结果的前K个最大的数里面是否含有target中的值。一般都是取1。
当k为1时:
预测值为[0,1,2]
真实值为[0,2,1]
输出为[True,False,False]
当k为2时:
预测值为
# 0,1
# 1,2
# 0,2
真实值为[0,0,1]
输出为[True,True,False]
探究未知是最大乐趣
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· winform 绘制太阳,地球,月球 运作规律
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人