python 离散序列 样本数伸缩(原创)

解决问题:

有一个固定长度的1维矩阵,将这个矩阵的取样点进行扩充和减少

 

 

功能函数:

 1 def discrete_scale(data, num):
 2     import numpy as np
 3     import copy
 4     """
 5     :param data: 原始一维矩阵数据
 6     :param num: 设定的样本长度
 7     :return d1: 目标矩阵输出
 8     """
 9     len = data.shape[0]  # 原始数据长度
10 
11     if len < num:  # 样本扩展
12         t = (len - 1) / (num - 1)  # 映射差值
13         d0 = np.array(range(num))  # 序列映射
14         d0 = d0 * t
15 
16         d0_1 = copy.deepcopy(d0).astype(int)  # 整数部分
17         d0_0 = d0 - d0_1  # 小数部分
18         dist = data[1:] - data[:-1]  # 维度减小一个数据
19         d1_1 = data[d0_1]
20         d1_0 = dist[d0_1[:-1]]
21         d1_0 = d1_0 * d0_0[:-1]
22         d1 = copy.deepcopy(d1_1[:-1] + d1_0)
23         d1 = np.hstack((d1, data[-1]))
24 
25     elif len > num:  # 样本压缩
26         t = (len - 1) / num  # 映射差值 分成7个给值区域
27         d0 = np.array(range(num + 1))  # 序列映射
28         d0 = d0 * t
29 
30         d0_1 = copy.deepcopy(d0).astype(int)  # 整数部分
31         list = []
32         for i in range(d0_1.shape[0] - 1):
33             list.append(np.mean(data[d0_1[i]:d0_1[i + 1] + 1]))
34         d1 = np.array(list)
35 
36     else:   # 目标长度与原始长度相同
37         d1 = data
38     return d1

 

实例程序:

 1 import numpy as np
 2 a = np.array(range(0,1000))
 3 print(a)
 4 b = np.sin(a/100)
 5 print(b)
 6 
 7 num = 100
 8 x1 = np.array(range(num))
 9 y1 = discrete_scale(b, num)
10 
11 import matplotlib.pylab as plt
12 plt.plot(x1, y1, 'r-')
13 plt.plot(a, b, 'b-')
14 plt.show()
15 print(b)

posted on 2018-12-26 15:41  周健康  阅读(810)  评论(0编辑  收藏  举报

导航