二维的搞得差不多了就想搞三维的,但是网上搜了半天只找到两道题目,蛋疼。。

/*给出三维空间中的n个顶点,求解由这n个顶点构成的凸包表面的多边形个数.
增量法求解:首先任选4个点形成的一个四面体,然后每次新加一个点,分两种情况:
           1> 在凸包内,则可以跳过
           2> 在凸包外,找到从这个点可以"看见"的面,删除这些面,然后对于一边没有面的线段,和新加的这个点新建一个面,至于这个点可以看见的面,就是求出这个面的方程(可以直接求法向量).*/

下面是三维凸包的模板。。有了这个模板应该对付三维凸包的题就没问题了吧。。
#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;

const int MAXN=505;
const double EPS=1e-8;

struct Point
{
       double x,y,z;
       Point(){}
       Point(double xx,double yy,double zz):x(xx),y(yy),z(zz){}
      
       Point operator -(const Point p1)                                           //两向量之差
       {
             return Point(x-p1.x,y-p1.y,z-p1.z);
       }
      
       Point operator *(Point p)                                                 //叉乘
       {
             return Point(y*p.z-z*p.y,z*p.x-x*p.z,x*p.y-y*p.x);
       }
      
       double operator ^(Point p)                                               //点乘
       {
              return (x*p.x+y*p.y+z*p.z);
       }
};

struct CH3D
{
       struct face
       {
              int a,b,c;                                                        //表示凸包一个面上三个点的编号
              bool ok;                                                          //表示该面是否属于最终凸包中的面
       };
      
       int n;                                                                   //初始顶点数
       Point P[MAXN];                                                           //初始顶点
      
       int num;                                                                 //凸包表面的三角形数
       face F[8*MAXN]; 
      
       int g[MAXN][MAXN];                                                       //凸包表面的三角形
       
       double vlen(Point a)                                                     //向量长度
       {
              return sqrt(a.x*a.x+a.y*a.y+a.z*a.z);
       }
      
       Point cross(const Point &a, const Point &b, const Point &c)             //叉乘
       {
             return Point((b.y-a.y)*(c.z-a.z)-(b.z-a.z)*(c.y-a.y),-((b.x-a.x)*(c.z-a.z)-(b.z-a.z)*(c.x-a.x)),(b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x));
       }

       double area(Point a,Point b,Point c)                                   //三角形面积*2
       {
              return vlen((b-a)*(c-a));
       }
      
       double volume(Point a,Point b,Point c,Point d)                        //四面体有向体积*6
       {
              return (b-a)*(c-a)^(d-a);
       }
      
       double dblcmp(Point &p,face &f)                                       //正:点在面同向
       {
              Point m=P[f.b]-P[f.a];
              Point n=P[f.c]-P[f.a];
              Point t=p-P[f.a];
              return (m*n)^t;
       }
      
       void deal(int p,int a,int b)
       {
            int f=g[a][b];
            face add;
            if(F[f].ok)
            {
                 if(dblcmp(P[p],F[f])>EPS)
                     dfs(p,f);
                 else
                 {
                     add.a=b;   
                     add.b=a;
                     add.c=p;
                     add.ok=1;
                     g[p][b]=g[a][p]=g[b][a]=num;
                     F[num++]=add;
                 }
            }
       }
      
       void dfs(int p,int now)
       {
            F[now].ok=0;
            deal(p,F[now].b,F[now].a);
            deal(p,F[now].c,F[now].b);
            deal(p,F[now].a,F[now].c);
       }
      
       bool same(int s,int t)
       {
            Point &a=P[F[s].a];
            Point &b=P[F[s].b];
            Point &c=P[F[s].c];
            return fabs(volume(a,b,c,P[F[t].a]))<EPS && fabs(volume(a,b,c,P[F[t].b]))<EPS
                && fabs(volume(a,b,c,P[F[t].c]))<EPS;
       }
      
       void solve()                                                         //构建三维凸包
       {
            int i,j,tmp;
            face add;
            bool flag=true;
            num=0;
            if(n<4)
               return;
            for(i=1;i<n;i++)                                              //此段是为了保证前四个点不共面,若以保证,则可去掉
            {
                if(vlen(P[0]-P[i])>EPS)
                {
                       swap(P[1],P[i]);
                       flag=false;
                       break;
                }
            }
            if(flag)
                return;
            flag=true;
            for(i=2;i<n;i++)                                             //使前三点不共线
            {
                 if(vlen((P[0]-P[1])*(P[1]-P[i]))>EPS)
                 {
                       swap(P[2],P[i]);
                       flag=false;
                       break;
                 }
            }
            if(flag)
                return;
            flag=true;
            for(i=3;i<n;i++)                                            //使前四点不共面
            {
                  if(fabs((P[0]-P[1])*(P[1]-P[2])^(P[0]-P[i]))>EPS)
                  {
                        swap(P[3],P[i]);
                        flag=false;
                        break;
                  }
            }
            if(flag)
                return;
            for(i=0;i<4;i++)
            {
                   add.a=(i+1)%4;
                   add.b=(i+2)%4;
                   add.c=(i+3)%4;
                   add.ok=true;
                   if(dblcmp(P[i],add)>0)
                       swap(add.b,add.c);
                   g[add.a][add.b]=g[add.b][add.c]=g[add.c][add.a]=num;
                   F[num++]=add;
            }
            for(i=4;i<n;i++)
            {
                for(j=0;j<num;j++)
                {
                     if(F[j].ok && dblcmp(P[i],F[j])>EPS)
                     {
                          dfs(i,j);
                          break;
                     }
                }
            }
            tmp=num;
            for(i=num=0;i<tmp;i++)
              if(F[i].ok)
              {
                     F[num++]=F[i];
              }
       }
      
       double area()                                                     //表面积
       {
              double res=0.0;
              if(n==3)
              {
                   Point p=cross(P[0],P[1],P[2]);
                   res=vlen(p)/2.0;
                   return res;
              }       
              for(int i=0;i<num;i++)
                 res+=area(P[F[i].a],P[F[i].b],P[F[i].c]);
              return res/2.0;
       }
      
       double volume()                                                  //体积
       {
              double res=0.0;
              Point tmp(0,0,0);
              for(int i=0;i<num;i++)
                 res+=volume(tmp,P[F[i].a],P[F[i].b],P[F[i].c]);
              return fabs(res/6.0);
       }
      
       int triangle()                                                  //表面三角形个数   
       {
              return num;
       }
      
       int polygon()                                                   //表面多边形个数
       {
           int i,j,res,flag;
           for(i=res=0;i<num;i++)
           {
                flag=1;
                for(j=0;j<i;j++)
                 if(same(i,j))
                 {
                      flag=0;
                      break;
                 }
                res+=flag;
           }
           return res;
       }
};

CH3D hull;

int main()
{
    int i;
 double res;
    while(scanf("%d",&hull.n)!=EOF)
    {
         for(i=0;i<hull.n;i++)
           scanf("%lf%lf%lf",&hull.P[i].x,&hull.P[i].y,&hull.P[i].z);
         hull.solve();
         res=hull.area();
         printf("%.3lf\n",res);
    }
    return 0;

posted on 2011-08-12 22:25  →木头←  阅读(2187)  评论(0编辑  收藏  举报