BZOJ 3939: [Usaco2015 Feb]Cow Hopscotch
\(dp[i][j]\) 表示走到 \((i,j)\) 的方案数
\(dp[i][j] = \sum\limits_{x<i\wedge y<j \wedge c[x][y]\neq c[i][j]}dp[x][y]=\sum\limits_{x<i\wedge y<j}dp[x][y]-\sum\limits_{x<i\wedge y<j \wedge c[x][y] = c[i][j]}dp[x][y]\)
解法一:第一部分二维前缀和,动态开点线段树维护每种颜色每一列的方案数,\(i\) 循环行,\(j\) 循环列,那么就只需要查询 \(1\) ~ \(j-1\) 的和,先处理出每一行的dp值,再一起更新线段树及二维前缀和
解法二:CDQ分治,按行分治,考虑前半部分对后半部分的贡献
两种写法都挺好写的,复杂度都是 \(O(nm\log n)\),但是CDQ空间更优,常数小
/*** solution1 ***/
#include <bits/stdc++.h>
#define mid ((l + r) >> 1)
#define lp tree[p].l
#define rp tree[p].r
const int MOD = 1000000007;
const int N = 776;
void M(int &x) {
if (x >= MOD) x -= MOD;
if (x < 0) x += MOD;
}
struct Node {
int l, r, sum;
} tree[10 * N * N];
int tol, R, C, K;
int sum[N][N], dp[N][N], color[N][N];
void update(int &p, int l, int r, int pos, int v) {
if (!p) p = ++tol;
if (l == r) {
M(tree[p].sum += v);
return;
}
if (pos <= mid) update(lp, l, mid, pos, v);
else update(rp, mid + 1, r, pos, v);
M(tree[p].sum = tree[lp].sum + tree[rp].sum);
}
int query(int p, int l, int r, int x, int y) {
if (x > y) return 0;
if (!p) return 0;
if (x <= l && y >= r) return tree[p].sum;
int ans = 0;
if (x <= mid) M(ans += query(lp, l, mid, x, y));
if (y > mid) M(ans += query(rp, mid + 1, r, x, y));
return ans;
}
int root[N * N];
int main() {
scanf("%d%d%d", &R, &C, &K);
for (int i = 1; i <= R; i++)
for (int j = 1; j <= C; j++)
scanf("%d", color[i] + j);
dp[1][1] = sum[1][1] = 1;
for (int i = 2; i <= R; i++)
sum[i][1] = 1;
for (int j = 2; j <= C; j++)
sum[1][j] = 1;
update(root[color[1][1]], 1, C, 1, 1);
for (int i = 2; i <= R; i++) {
for (int j = 2; j <= C; j++) {
M(dp[i][j] = sum[i - 1][j - 1] - query(root[color[i][j]], 1, C, 1, j - 1));
}
for (int j = 2; j <= C; j++) {
update(root[color[i][j]], 1, C, j, dp[i][j]);
M(sum[i][j] = (1LL * dp[i][j] + sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1]) % MOD);
}
}
printf("%d\n", dp[R][C]);
return 0;
}
/*** solution2 ***/
#include <bits/stdc++.h>
namespace IO {
char buf[1 << 21], *p1 = buf, *p2 = buf;
inline void read() {}
inline int getc() {
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++;
}
template <typename T, typename... T2>
inline void read(T &x, T2 &... oth) {
T f = 1; x = 0;
char ch = getc();
while (!isdigit(ch)) { if (ch == '-') f = -1; ch = getc(); }
while (isdigit(ch)) { x = x * 10 + ch - 48; ch = getc(); }
x *= f;
read(oth...);
}
}
const int MOD = 1000000007;
const int N = 776;
inline void M(int &x) {
if (x >= MOD) x -= MOD;
if (x < 0) x += MOD;
}
int n, m, k;
int dp[N][N], sum[N * N], color[N][N];
int st[N * N], top;
bool vis[N * N];
void solve(int l, int r) {
if (l >= r) return;
int mid = l + r >> 1;
solve(l, mid);
int all = 0;
for (int j = 1; j <= m; j++) {
for (int i = mid + 1; i <= r; i++)
M(dp[i][j] += all - sum[color[i][j]]);
for (int i = l; i <= mid; i++) {
M(all += dp[i][j]), M(sum[color[i][j]] += dp[i][j]);
if (!vis[color[i][j]]) vis[color[i][j]] = 1, st[++top] = color[i][j];
}
}
while (top) {
int c = st[top--];
sum[c] = 0;
vis[c] = 0;
}
solve(mid + 1, r);
}
int main() {
IO::read(n, m, k);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
IO::read(color[i][j]);
dp[1][1] = 1;
solve(1, n);
printf("%d\n", dp[n][m]);
return 0;
}