BZOJ 3512. DZY Loves Math IV
因为 $n$ 比较小,所以可以对每一个 $n$ 求一遍 $\sum \limits_{i=1}^m \varphi(ni)$,然后加起来。
$S(n,m)=\sum\limits_{i=1}^m\varphi(ni)$,那么答案就是 $\sum\limits_{i=1}^n S(i,m)$
首先看 $\varphi(ni)$ 怎么求。
当 $|\mu(n)|=1$ 时,$\varphi(ni)=\varphi(\dfrac{n}{d}i)d=\varphi(\dfrac{n}{d})\varphi(i)d=\varphi(\dfrac{n}{d})\varphi(i)\sum\limits_{d'|d}\varphi(\dfrac{d}{d'})=\varphi(i)\sum \limits_{d'|d}\varphi(\dfrac{n}{d'})$
其中 $d = (n,i)$,上述推导根据积性函数的性质以及 $\varphi(n)=n\prod \limits_{p|n}(1-\dfrac{1}{p})$ 得到
那么 $$\begin{aligned}&S(n,m) \\=&\sum_{i=1}^m\varphi(ni)\\=&\sum_{i=1}^m\varphi(i)\sum_{d|(n,i)}\varphi(\frac{n}{d})\\=&\sum_{d|n}\varphi(\frac{n}{d})\sum_{d|i}\varphi(i)\\=&\sum_{d|n}\varphi(\frac{n}{d})\sum_{i=1}^{\lfloor \frac{m}{d} \rfloor}\varphi(id)\\=&\sum_{d|n}\varphi(\frac{n}{d})S(d,\lfloor \frac{m}{d} \rfloor)\end{aligned}$$
当 $n=1$ 时就是求 $\varphi$ 的前缀和,杜教筛解决。
当 $\mu(n)=0$ 时,$n=\prod\limits_{p_i | n}p_i^{c_i}$,$k=\prod\limits_{p_i | n}p_i$,那么 $S(n,m)=\dfrac{nS(k, m)}{k}$
#include <bits/stdc++.h> #define pii pair<int, int> const int N = 1e6 + 7; const int MOD = 1e9 + 7; void M(int &a) { if (a >= MOD) a -= MOD; if (a < 0) a += MOD; } int prime[N], prin, mu[N], phi[N], mx[N], sum[N]; void init() { static bool vis[N]; mu[1] = phi[1] = 1; for (int i = 2; i < N; i++) { if (!vis[i]) prime[++prin] = i, mu[i] = -1, phi[i] = i - 1, mx[i] = i; for (int j = 1; j <= prin && i * prime[j] < N; j++) { vis[i * prime[j]] = 1; if (i % prime[j] == 0) { phi[i * prime[j]] = prime[j] * phi[i]; mx[i * prime[j]] = mx[i]; break; } phi[i * prime[j]] = phi[i] * phi[prime[j]]; mu[i * prime[j]] = -mu[i]; mx[i * prime[j]] = mx[i] * prime[j]; } } for (int i = 1; i < N; i++) M(sum[i] = sum[i - 1] + phi[i]); } struct Hash { static const int mod = 1e6 + 7; int head[mod + 5], cnt; struct E { std::pii x; int ans, ne; } e[mod + 5]; inline int getid(const std::pii &x) { return (1LL * x.first * MOD + x.second) % mod; } void insert(const std::pii &x, int ans) { int u = getid(x); e[++cnt].x = x; e[cnt].ans = ans; e[cnt].ne = head[u]; head[u] = cnt; } int query(const std::pii &x) { int u = getid(x); for (int i = head[u]; i; i = e[i].ne) if (e[i].x == x) return e[i].ans; return -1; } } H; int sum1(int n) { return 1LL * n * (n + 1) / 2 % MOD; } int S(int n, int m) { if (!n || !m) return 0; if (n == 1 && m < N) return sum[m]; int ans = H.query(std::pii(n, m)); if (~ans) return ans; ans = 0; if (n == 1) { ans = sum1(m); for (int i = 2, j; i <= m; i = j + 1) { j = m / (m / i); M(ans -= 1LL * (j - i + 1) * S(n, m / i)); } } else if (mu[n] == 0) { M(ans = 1LL * n / mx[n] * S(mx[n], m) % MOD); } else { for (int d = 1; d * d <= n; d++) { if (n % d) continue; M(ans += 1LL * phi[n / d] * S(d, m / d) % MOD); if (d * d < n) M(ans += 1LL * phi[d] * S(n / d, m / (n / d)) % MOD); } } H.insert(std::pii(n, m), ans); return ans; } int main() { init(); int n, m; scanf("%d%d", &n, &m); int ans = 0; for (int i = 1; i <= n; i++) { M(ans += S(i, m)); } printf("%d\n", ans); return 0; }