BZOJ 1834: [ZJOI2010]network 网络扩容

 

传送门

Description

给定一张有向图,每条边都有一个容量C和一个扩容费用W。这里扩容费用是指将容量扩大1所需的费用。
求: 
1、在不扩容的情况下,1到N的最大流; 
2、将1到N的最大流增加K所需的最小扩容费用。

Input

第一行包含三个整数N,M,K,表示有向图的点数、边数以及所需要增加的流量。 
接下来的M行每行包含四个整数u,v,C,W,表示一条从u到v,容量为C,扩容费用为W的边。
N<=1000,M<=5000,K<=10

Output

输出文件一行包含两个整数,分别表示问题1和问题2的答案。

Sample Input

5 8 2
1 2 5 8
2 5 9 9
5 1 6 2
5 1 1 8
1 2 8 7
2 5 4 9
1 2 1 1
1 4 2 1

Sample Output

13 19

 

刚开始傻逼傻逼地把原边都给清空了再重新建边。这样求出来的费用所能增加的K流量,不一定能使最大流变大K,因为走法肯定是不一样了。

所以必须在残量网络(跑完最大流后)的基础上加边。

#include <bits/stdc++.h>
using namespace std;

inline int read() {
    int x = 0, f = 1; char ch = getchar();
    while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getchar(); }
    while (ch >= '0' && ch <= '9') { x = x * 10 + ch - 48; ch = getchar(); }
    return x * f;
}

const int N = 5e3 + 10;
const int INF = 0x3f3f3f3f;
struct E { int v, ne, f, c; } e[N * 5];
int head[N], cnt, n, m, iter[N], level[N], k;
int path[N], dis[N], x[N * 5], y[N * 5], f[N * 5], c[N * 5];
bool inq[N];

inline void add(int u, int v, int f, int c) {
    e[cnt].v = v; e[cnt].f = f; e[cnt].c = c; e[cnt].ne = head[u]; head[u] = cnt++;
    e[cnt].v = u; e[cnt].f = 0; e[cnt].c = -c; e[cnt].ne = head[v]; head[v] = cnt++;
}

bool bfs(int s, int t) {
    for (int i = 0; i <= t; i++) level[i] = -1, iter[i] = head[i];
    queue<int> que;
    que.push(s);
    level[s] = 0;
    while (!que.empty()) {
        int u = que.front(); que.pop();
        for (int i = head[u]; ~i; i = e[i].ne) {
            int v = e[i].v, f = e[i].f;
            if (level[v] < 0 && f) {
                level[v] = level[u] + 1;
                que.push(v);
            }
        }
    }
    return level[t] != -1;
}

bool spfa(int s, int t) {
    memset(dis, 0x3f, sizeof(dis));  
    memset(inq, 0, sizeof(inq));
    memset(path, -1, sizeof(path));
    queue<int> que;
    que.push(s);
    dis[s] = 0;
    inq[s] = 1;
    while (!que.empty()) {
        int u = que.front(); que.pop();
        inq[u] = false;
        for (int i = head[u]; ~i; i = e[i].ne) {
            int v = e[i].v;
            if (dis[v] > dis[u] + e[i].c && e[i].f) {
                dis[v] = dis[u] + e[i].c;
                path[v] = i;
                if (!inq[v]) {
                    que.push(v);
                    inq[v] = 1;
                }
            }
        }
    }
    return dis[t] != INF;
}

int dfs(int u, int t, int f) {
    if (u == t || !f) return f;
    int flow = 0;
    for (int i = iter[u]; ~i; i = e[i].ne) {
        iter[u] = i;
        int v = e[i].v;
        if (level[v] == level[u] + 1 && e[i].f) {
            int w = dfs(v, t, min(f, e[i].f));
            if (!w) continue;
            e[i].f -= w, e[i^1].f += w;
            flow += w, f -= w;
            if (f <= 0) break; 
        }
    }
    return flow;
}

int mcf(int s, int t) {
    int ans = 0;
    while (spfa(s, t)) {
        int x = INF;
        for (int i = path[t]; ~i; i = path[e[i^1].v]) x = min(x, e[i].f);
        ans += x * dis[t];
        for (int i = path[t]; ~i; i = path[e[i^1].v]) e[i].f -= x, e[i^1].f += x;
    }
    return ans;
}

int main() {
    memset(head, -1, sizeof(head));
    n = read(), m = read(), k = read();
    for (int i = 0; i < m; i++) {
        x[i] = read(), y[i] = read(), f[i] = read(), c[i] = read();
        add(x[i], y[i], f[i], 0);   
    }
    int ans = 0;
    for (; bfs(1, n); ans += dfs(1, n, INF));
    printf("%d ", ans);
    for (int i = 0; i < m; i++) add(x[i], y[i], INF, c[i]);
    add(0, 1, k, 0);
    printf("%d\n", mcf(0, n));
    return 0;
}
View Code

 

posted @ 2019-05-28 13:52  Mrzdtz220  阅读(195)  评论(0编辑  收藏  举报