94. Binary Tree Inorder Traversal
基础训练:
递归:
1.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
private:
vector<int> res;
public:
vector<int> inorderTraversal(TreeNode* root) {
if(root==NULL) return {};
if(root->left) inorderTraversal(root->left);
res.push_back(root->val);
if(root->right) inorderTraversal(root->right);
return res;
}
};
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
private:
void dfs(TreeNode* root,vector<int>& res){
if(root==nullptr) return;
if(root->left) dfs(root->left,res);
res.push_back(root->val);
if(root->right) dfs(root->right,res);
return;
}
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> res;
dfs(root,res);
return res;
}
};
迭代:
1.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
if(root==nullptr) return {};
vector<int> res;
stack<TreeNode*> st;
st.push(root);
while(!st.empty()){
while(root!=nullptr){
root=root->left;
if(root==nullptr) break;
st.push(root);
}
TreeNode* node=st.top();
st.pop();
res.push_back(node->val);
if(node->right) {
st.push(node->right);
root=node->right;
}
}
return res;
}
};
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> res;
stack<TreeNode*> st;
while(root!=nullptr||!st.empty()){
while(root!=nullptr){
st.push(root);
root=root->left;
}
TreeNode* node=st.top();
st.pop();
res.push_back(node->val);
if(node->right) root=node->right;
}
return res;
}
};
Morris 算法,可以节省栈的空间。主要思路是重构树的结构,按照前序、中序或后续的顺序连接成链表的形式。
这里按照中序的顺序。那么就将root左子树最右边的节点的right指向root,相当于root和root->right即右子树,都挂在root此时左子树的最右的节点的right指针上,然后root=root->left,所以还需要一个变量将root->left指为NULL,然后重复上述步骤,最后得到一个链表,每个节点只有right指向一个节点,root将会指向最开始左子树的最左侧的节点,然后循环会将root一个一个加入进res数组。
详细解释
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> res;
TreeNode* pre=nullptr;
while(root!=nullptr){
if(root->left){
pre = root->left;
while(pre->right!=nullptr){
pre=pre->right;
}
pre->right=root;
TreeNode* dele=root;
root=root->left;
dele->left=NULL;
}
else{
res.push_back(root->val);
root = root->right;
}
}
return res;
}
};