17、集合--HashMap
HashMap的基本方法测试:
public static void main(String[] args) { HashMap<String,Student> map = new HashMap<>(); Student student1 = new Student("aa",5); Student student2 = new Student("cc",1); Student student3 = new Student("bb",9); Student student4 = new Student("dd",7); //存放键值对 map.put("a",student1); map.put("c",student2); map.put("b",student3); map.put("d",student4); System.out.println("添加数据之后的map:" + map); //通过键获取值 System.out.println("获取key = d 的 value :" + map.get("d")); //判断是否为空 System.out.println("为空:" + map.isEmpty()); //获取map的容量 System.out.println("大小:" + map.size()); //判断映像中是否存在关键字key System.out.println("是否存在key = d 的关键字 :" + map.containsKey("d")); //判断映像中是否存在value System.out.println("是否存在value=student1 : " + map.containsValue(student1)); //返回映像值中所有的值的视图集 System.out.println("所有值的视图集:" + map.values()); //所有键的视图集 System.out.println("所有键的视图集:" + map.keySet()); //遍历 Iterator it = map.keySet().iterator(); while (it.hasNext()){ String key = (String) it.next(); System.out.println("遍历" + key + "=" + map.get(key)); } //返回Map.entry对象的视图集 System.out.println("返回Map.entry对象的视图集:" + map.entrySet()); //移除指定key--value map.remove("d"); System.out.println("移除key = d的之后的map:" + map); //清空map map.clear(); System.out.println("清空之后的map:" + map); }
Student类同时重写hashCode和equals方法
public class Student { private String name; private int age; public String getName() { return name; } public void setName(String name) { this.name = name; } public int getAge() { return age; } public void setAge(int age) { this.age = age; } public Student(String name, int age) { super(); this.name = name; this.age = age; } public Student() { super(); } @Override public String toString() { return "Student{" + "name='" + name + '\'' + ", age=" + age + '}'; } @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + age; result = prime * result + ((name == null) ? 0 : name.hashCode()); return result; } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; Student other = (Student) obj; if (age != other.age) return false; if (name == null) { if (other.name != null) return false; } else if (!name.equals(other.name)) return false; return true; } }
底层数据的存储结构
基本方法的底层解析
https://zhuanlan.zhihu.com/p/28501879可参考其中的相关说明,本人也是借鉴相关说明顺序
1、实例化对象HashMap<String,Student> map = new HashMap<>();
初始化一个负载因子,负载因子默认是0.75f
private static final long serialVersionUID = 362498820763181265L; static final int MAXIMUM_CAPACITY = 1 << 30; static final float DEFAULT_LOAD_FACTOR = 0.75f; static final int TREEIFY_THRESHOLD = 8; static final int UNTREEIFY_THRESHOLD = 6; static final int MIN_TREEIFY_CAPACITY = 64; transient Node<K,V>[] table;//下文将会用到,用于存储数据的全局类实例化 transient Set<Map.Entry<K,V>> entrySet; transient int size;//逻辑长度 transient int modCount;//修改次数 int threshold; final float loadFactor; public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted }
Node类
用来保存网Map里存放数据
static class Node<K,V> implements Map.Entry<K,V> { final int hash; final K key;//键 V value;//值 Node<K,V> next;//标记下一个元素 Node(int hash, K key, V value, Node<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + "=" + value; } public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry<?,?> e = (Map.Entry<?,?>)o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } }
2、put(K key, V value):向map中存入数据
注意这里重写equals方法同时一定要重写hashCode方法
将键(key)和值(value)传入put()方法中
public V put(K key, V value) { return putVal(hash(key), key, value, false, true); }
hash(Object key)方法
此时将传入的key值调用hash()方法
static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
putVal()方法
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {
Node<K,V>[] tab;
Node<K,V> p;
int n, i;
//将table的值赋给tab在判断是否等于null,同时判断其长度是否等于0 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length;//放入的第一个元素时table为空,会触发resize方法
//首先计算i的值 i = (n -1) & h
//此时的p = tab[i]
//在取判断p是否等于null
//如果等于null 用key,value构造一个Node对象放入数组鞋标为i的位置
//再次添加数据经过(n- 1) & hash算出在数组下标的位置 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null);
else { Node<K,V> e; K k;
//判断table[i]的首个元素是否和key一样,如果相同直接覆盖 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else {
//如果计算数组下标两个相同产生了冲突:
//此时是执行下面的循环
//下方表明红色部分很重要
//类似单链表的方式将上一个实例Node的对象的next指向此时新的Node对象
for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null);
//当链表长度达到8时,将链表转为红黑色来处理
//加入了红黑树是为了放置哈希表撞击,当链表的长度为8时,及时转为红黑树,提高map的效率
if (binCount >= TREEIFY_THRESHOLD - 1) // TREEIFY_THRESHOLD = 8 treeifyBin(tab, hash);//把链表转为红黑色 break; }
//keu已经存在直接覆盖value if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount;
//插入出成功之后,判断实际存在的键值对对数量size是否超过了做大容量threshold,超过了进行扩容 if (++size > threshold) resize();//扩容就是重新计算容量 afterNodeInsertion(evict); return null; }
resize()方法
当放入第一个元素时会触发resize()方法这些关键代码:
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; == 16
关键是当我们放入第一个元素时
如果底层的数组还是null,系统会初始化一个长度为16的Node数组,与ArrList的初始化很项
最后返回数组
虽然数组的长度等于16但是长度size依然是0
final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) { for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
关于haash()方法是hashMap自己写的一个方法用来计算hash的值
HashMap的最底层是数组来实现的,数组里的元素可能为null,也有可能是单个对象,还有可能是单向链表或是红黑树。
文中的resize在底层数组为null的时候会初始化一个数组,不为null的情况下会去扩容底层数组,并会重排底层数组里的元素。
3、get()方法通过key取value
public V get(Object key) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? null : e.value; }
getNode()
final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab;//Entry对象数组
Node<K,V> first, e; //在tab数组中经过散列的第一个位置
int n; K k;
//找到插入的第一个Node,方法是hash值和n-1相同 ,tab[(n-1)] & hash
//也就是说在一条链上的hash相同 if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) {
//检查第一个Node对象是不是要找的Node if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first;
//检查first后面的Node if ((e = first.next) != null) { if (first instanceof TreeNode) return ((TreeNode<K,V>)first).getTreeNode(hash, key);
//遍历后面的链表,找到key值和hash值相同的Node do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }
get(key)方法时获取key的hash值,计算hash&(n-1)得到在链表数组中的位置first=tab[hash&(n-1)],
先判断first的key是否与参数key相等,不等就遍历后面的链表找到相同的key值返回对应的Value值即可
4、containsKey()方法
调用的方法同上
public boolean containsKey(Object key) { return getNode(hash(key), key) != null; }
5、containsValue()方法
此时定义一个临时的数组用于存放
然后对table进行遍历并且使用equlas方法进行比对
public boolean containsValue(Object value) { Node<K,V>[] tab; V v; if ((tab = table) != null && size > 0) { for (int i = 0; i < tab.length; ++i) { for (Node<K,V> e = tab[i]; e != null; e = e.next) { if ((v = e.value) == value || (value != null && value.equals(v))) return true; } } } return false; }
6、values()
public Collection<V> values() { Collection<V> vs = values; if (vs == null) { vs = new Values(); values = vs; } return vs; }
7、KeySet()
public Set<K> keySet() { Set<K> ks = keySet; if (ks == null) { ks = new KeySet(); keySet = ks; } return ks; }
8、entrySet()
public Set<Map.Entry<K,V>> entrySet() { Set<Map.Entry<K,V>> es; return (es = entrySet) == null ? (entrySet = new EntrySet()) : es; }
9、remove()
public V remove(Object key) { Node<K,V> e; return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value; }
final Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) { Node<K,V>[] tab; Node<K,V> p; int n, index; if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) { Node<K,V> node = null, e; K k; V v; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) node = p; else if ((e = p.next) != null) { if (p instanceof TreeNode) node = ((TreeNode<K,V>)p).getTreeNode(hash, key); else { do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { node = e; break; } p = e; } while ((e = e.next) != null); } } if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) { if (node instanceof TreeNode) ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable); else if (node == p) tab[index] = node.next; else p.next = node.next; ++modCount; --size; afterNodeRemoval(node); return node; } } return null; }
10、clear()
public void clear() { Node<K,V>[] tab; modCount++; if ((tab = table) != null && size > 0) { size = 0; for (int i = 0; i < tab.length; ++i) tab[i] = null; } }
HashMap的扩容机制resize()
构造hash表时,如果不指明初始大小,默认大小为16(即Node数组大小16),
如果Node[]数组中的元素达到(填充比*Node.length)
重新调整HashMap大小 变为原来2倍大小,扩容很耗时
final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0;
//旧表的长度不是空 if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; }
//把新表的长度设置为旧表长度的两倍 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY)
//把新表的门限设置为旧表门限的两倍 newThr = oldThr << 1; // double threshold }
//如果旧表的长度为0,就是说第一次初始化表 else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"})
//开始构造新表 Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab;//把新表赋值给table if (oldTab != null) {//原表不是空要把原表中数据移动到新表中
//遍历旧表 for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null)//说明这个node没有链表直接放在新表的e.hash & (newCap - )位置 newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//如果e后边有链表,到这里表示e后面带着单链表,需要遍历单链表 else { // preserve order
//新计算在新表的位置,并运行搬运 Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next;//记录下一个节点
//新表是旧表的两倍,实例上就把单链表拆分两队
//e.hash & oldCap为偶数一堆 e.hash & oldCap为奇数对
if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) {//loTail队不为null,放在在新表原位置 loTail.next = null; newTab[j] = loHead; } if (hiTail != null) {//hiTail队不为null,放在新表j + oldCap位置 hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }