Loading

ABC 309 E 题解

原题传送门

题目大意\(:\)懒得说了\(,\)自己去看吧\((\)

首先这道题我赛时一看就感觉是树上差分\(,\)但是我没学过(悲

所以我选择大卫拖把专家寻找一些性质\(:\)

\(1.\)一个节点如果有多个\(y\)\(,\)那么只需要保留最大的即可\(。\)

\(2.\)每个节点的\(y\)值是具有往下的传递性的\(,\)具体来说就是\(,\)一个节点的\(y\)值减一然后往下传递\(,\)是完全可行并且可以得出正确答案的\(。\)比如\(,\)假设节点\(u\)给它的儿子节点\(v\)安上保险之后\(,\)便可以把\(u\)\(y\)值减一\((\)减一也就代表已经给\(v\)用了一次\()\)然后直接丢给\(v,\)然后再让\(v\)继续向下传递\(,\)这是完全等价的\(。\)

然后此题就很显然地可以推出\(O(n)\)做法了。就是直接\(dfs\)一遍,在标记给节点安上保险的同时传递\(y\)值,并且只保留最大值然后继续往下标记、传递。

奉上\(AC\) \(Code:\)

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define il inline
#define re register
const int N=300010;
int n,m,p[N],y[N];
int idx,head[N];
int fa[N];
bool f[N],vis[N];
//链式向前星存边
struct edge{
	int u,v,nxt;
}e[N];
il void adde(int u,int v){
	e[++idx]={u,v,head[u]};
	head[u]=idx;
}
il void dfs(int x){
	if(y[x]>=0)f[x]=1;//如果y值还有剩余就安上保险 
	for(re int i=head[x];i;i=e[i].nxt){
		int v=e[i].v;
		y[v]=max(y[v],y[x]-1);//传递,取max 
		dfs(v);
	}
}
il int read(){
    re int x=0,f=1;char c=getchar();
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9')x=(x<<3)+(x<<1)+(c^48),c=getchar();
    return x*f;
}
int main(){
	n=read(),m=read();
	for(re int i=2;i<=n;i++){
		p[i]=read();
		adde(p[i],i);
	}
	memset(y,-1,sizeof y);
	for(re int i=1;i<=m;i++){
		int x=read(),z=read();
		y[x]=max(y[x],z);
	}
	dfs(1);
	//统计答案 
	int ans=0;
	for(re int i=1;i<=n;i++)if(f[i])ans++;
	printf("%d",ans);
    return 0;
}
posted @ 2023-08-11 16:11  MrcFrst  阅读(15)  评论(0编辑  收藏  举报