Python Tutorial 学习(九)--Classes

9. Classes 类


Compared with other programming languages, Python’s class mechanism adds classes with a minimum of new syntax and semantics. It is a mixture of the class mechanisms found in C++ and Modula-3. Python classes provide all the standard features of Object Oriented Programming: the class inheritance mechanism allows multiple base classes, a derived class can override any methods of its base class or classes, and a method can call the method of a base class with the same name. Objects can contain arbitrary amounts and kinds of data. As is true for modules, classes partake of the dynamic nature of Python: they are created at runtime, and can be modified further after creation.

In C++ terminology, normally class members (including the data members) are public (except see below Private Variables and Class-local References), and all member functions are virtual. As in Modula-3, there are no shorthands for referencing the object’s members from its methods: the method function is declared with an explicit first argument representing the object, which is provided implicitly by the call. As in Smalltalk, classes themselves are objects. This provides semantics for importing and renaming. Unlike C++ and Modula-3, built-in types can be used as base classes for extension by the user. Also, like in C++, most built-in operators with special syntax (arithmetic operators, subscripting etc.) can be redefined for class instances.

(Lacking universally accepted terminology to talk about classes, I will make occasional use of Smalltalk and C++ terms. I would use Modula-3 terms, since its object-oriented semantics are closer to those of Python than C++, but I expect that few readers have heard of it.)

9.1. A Word About Names and Objects


Objects have individuality, and multiple names (in multiple scopes) can be bound to the same object. This is known as aliasing in other languages. This is usually not appreciated on a first glance at Python, and can be safely ignored when dealing with immutable basic types (numbers, strings, tuples). However, aliasing has a possibly surprising effect on the semantics of Python code involving mutable objects such as lists, dictionaries, and most other types. This is usually used to the benefit of the program, since aliases behave like pointers in some respects. For example, passing an object is cheap since only a pointer is passed by the implementation; and if a function modifies an object passed as an argument, the caller will see the change — this eliminates the need for two different argument passing mechanisms as in Pascal.

9.2. Python Scopes and Namespaces


A namespace is a mapping from names to objects.
Most namespaces are currently implemented as Python dictionaries, but that’s normally not noticeable in any way (except for performance), and it may change in the future.
Examples of namespaces are: the set of built-in names (containing functions such as abs(), and built-in exception names); the global names in a module; and the local names in a function invocation.
In a sense the set of attributes of an object also form a namespace.
The important thing to know about namespaces is that there is absolutely no relation between names in different namespaces;
for instance, two different modules may both define a function maximize without confusion — users of the modules must prefix it with the module name.

9.3. A First Look at Classes
Classes introduce a little bit of new syntax, three new object types, and some new semantics.

9.3.1. Class Definition Syntax
The simplest form of class definition looks like this:

class ClassName:

.
.
.
Class definitions, like function definitions (def statements) must be executed before they have any effect. (You could conceivably place a class definition in a branch of an if statement, or inside a function.)

In practice, the statements inside a class definition will usually be function definitions, but other statements are allowed, and sometimes useful — we’ll come back to this later. The function definitions inside a class normally have a peculiar form of argument list, dictated by the calling conventions for methods — again, this is explained later.

When a class definition is entered, a new namespace is created, and used as the local scope — thus, all assignments to local variables go into this new namespace. In particular, function definitions bind the name of the new function here.

When a class definition is left normally (via the end), a class object is created. This is basically a wrapper around the contents of the namespace created by the class definition; we’ll learn more about class objects in the next section. The original local scope (the one in effect just before the class definition was entered) is reinstated, and the class object is bound here to the class name given in the class definition header (ClassName in the example).

9.3.2. Class Objects
Class objects support two kinds of operations: attribute references and instantiation.

Attribute references use the standard syntax used for all attribute references in Python: obj.name. Valid attribute names are all the names that were in the class’s namespace when the class object was created. So, if the class definition looked like this:

class MyClass:
"""A simple example class"""
i = 12345
def f(self):
return 'hello world'
then MyClass.i and MyClass.f are valid attribute references, returning an integer and a function object, respectively. Class attributes can also be assigned to, so you can change the value of MyClass.i by assignment. doc is also a valid attribute, returning the docstring belonging to the class: "A simple example class".

Class instantiation uses function notation. Just pretend that the class object is a parameterless function that returns a new instance of the class. For example (assuming the above class):

x = MyClass()
creates a new instance of the class and assigns this object to the local variable x.

The instantiation operation (“calling” a class object) creates an empty object. Many classes like to create objects with instances customized to a specific initial state. Therefore a class may define a special method named init(), like this:

def init(self):
self.data = []
When a class defines an init() method, class instantiation automatically invokes init() for the newly-created class instance. So in this example, a new, initialized instance can be obtained by:

x = MyClass()
Of course, the init() method may have arguments for greater flexibility. In that case, arguments given to the class instantiation operator are passed on to init(). For example,

class Complex:
... def init(self, realpart, imagpart):
... self.r = realpart
... self.i = imagpart
...
x = Complex(3.0, -4.5)
x.r, x.i
(3.0, -4.5)
9.3.3. Instance Objects
Now what can we do with instance objects? The only operations understood by instance objects are attribute references. There are two kinds of valid attribute names, data attributes and methods.

data attributes correspond to “instance variables” in Smalltalk, and to “data members” in C++. Data attributes need not be declared; like local variables, they spring into existence when they are first assigned to. For example, if x is the instance of MyClass created above, the following piece of code will print the value 16, without leaving a trace:

x.counter = 1
while x.counter < 10:
x.counter = x.counter * 2
print x.counter
del x.counter
The other kind of instance attribute reference is a method. A method is a function that “belongs to” an object. (In Python, the term method is not unique to class instances: other object types can have methods as well. For example, list objects have methods called append, insert, remove, sort, and so on. However, in the following discussion, we’ll use the term method exclusively to mean methods of class instance objects, unless explicitly stated otherwise.)

Valid method names of an instance object depend on its class. By definition, all attributes of a class that are function objects define corresponding methods of its instances. So in our example, x.f is a valid method reference, since MyClass.f is a function, but x.i is not, since MyClass.i is not. But x.f is not the same thing as MyClass.f — it is a method object, not a function object.

9.3.4. Method Objects
Usually, a method is called right after it is bound:

x.f()
In the MyClass example, this will return the string 'hello world'. However, it is not necessary to call a method right away: x.f is a method object, and can be stored away and called at a later time. For example:

xf = x.f
while True:
print xf()
will continue to print hello world until the end of time.

What exactly happens when a method is called? You may have noticed that x.f() was called without an argument above, even though the function definition for f() specified an argument. What happened to the argument? Surely Python raises an exception when a function that requires an argument is called without any — even if the argument isn’t actually used...

Actually, you may have guessed the answer: the special thing about methods is that the object is passed as the first argument of the function. In our example, the call x.f() is exactly equivalent to MyClass.f(x). In general, calling a method with a list of n arguments is equivalent to calling the corresponding function with an argument list that is created by inserting the method’s object before the first argument.

If you still don’t understand how methods work, a look at the implementation can perhaps clarify matters. When an instance attribute is referenced that isn’t a data attribute, its class is searched. If the name denotes a valid class attribute that is a function object, a method object is created by packing (pointers to) the instance object and the function object just found together in an abstract object: this is the method object. When the method object is called with an argument list, a new argument list is constructed from the instance object and the argument list, and the function object is called with this new argument list.

9.3.5. Class and Instance Variables
Generally speaking, instance variables are for data unique to each instance and class variables are for attributes and methods shared by all instances of the class:

class Dog:

kind = 'canine'         # class variable shared by all instances

def __init__(self, name):
    self.name = name    # instance variable unique to each instance

d = Dog('Fido')
e = Dog('Buddy')
d.kind # shared by all dogs
'canine'
e.kind # shared by all dogs
'canine'
d.name # unique to d
'Fido'
e.name # unique to e
'Buddy'As discussed in A Word About Names and Objects, shared data can have possibly surprising effects with involving mutable objects such as lists and dictionaries. For example, the tricks list in the following code should not be used as a class variable because just a single list would be shared by all Dog instances:

class Dog:

tricks = []             # mistaken use of a class variable

def __init__(self, name):
    self.name = name

def add_trick(self, trick):
    self.tricks.append(trick)

d = Dog('Fido')
e = Dog('Buddy')
d.add_trick('roll over')
e.add_trick('play dead')
d.tricks # unexpectedly shared by all dogs
['roll over', 'play dead']Correct design of the class should use an instance variable instead:

class Dog:

def __init__(self, name):
    self.name = name
    self.tricks = []    # creates a new empty list for each dog

def add_trick(self, trick):
    self.tricks.append(trick)

d = Dog('Fido')
e = Dog('Buddy')
d.add_trick('roll over')
e.add_trick('play dead')
d.tricks
['roll over']
e.tricks
['play dead']9.4. Random Remarks
Data attributes override method attributes with the same name; to avoid accidental name conflicts, which may cause hard-to-find bugs in large programs, it is wise to use some kind of convention that minimizes the chance of conflicts. Possible conventions include capitalizing method names, prefixing data attribute names with a small unique string (perhaps just an underscore), or using verbs for methods and nouns for data attributes.

Data attributes may be referenced by methods as well as by ordinary users (“clients”) of an object. In other words, classes are not usable to implement pure abstract data types. In fact, nothing in Python makes it possible to enforce data hiding — it is all based upon convention. (On the other hand, the Python implementation, written in C, can completely hide implementation details and control access to an object if necessary; this can be used by extensions to Python written in C.)

Clients should use data attributes with care — clients may mess up invariants maintained by the methods by stamping on their data attributes. Note that clients may add data attributes of their own to an instance object without affecting the validity of the methods, as long as name conflicts are avoided — again, a naming convention can save a lot of headaches here.

There is no shorthand for referencing data attributes (or other methods!) from within methods. I find that this actually increases the readability of methods: there is no chance of confusing local variables and instance variables when glancing through a method.

Often, the first argument of a method is called self. This is nothing more than a convention: the name self has absolutely no special meaning to Python. Note, however, that by not following the convention your code may be less readable to other Python programmers, and it is also conceivable that a class browser program might be written that relies upon such a convention.

Any function object that is a class attribute defines a method for instances of that class. It is not necessary that the function definition is textually enclosed in the class definition: assigning a function object to a local variable in the class is also ok. For example:

Function defined outside the class

def f1(self, x, y):
return min(x, x+y)

class C:
f = f1
def g(self):
return 'hello world'
h = g
Now f, g and h are all attributes of class C that refer to function objects, and consequently they are all methods of instances of C — h being exactly equivalent to g. Note that this practice usually only serves to confuse the reader of a program.

Methods may call other methods by using method attributes of the self argument:

class Bag:
def init(self):
self.data = []
def add(self, x):
self.data.append(x)
def addtwice(self, x):
self.add(x)
self.add(x)
Methods may reference global names in the same way as ordinary functions. The global scope associated with a method is the module containing its definition. (A class is never used as a global scope.) While one rarely encounters a good reason for using global data in a method, there are many legitimate uses of the global scope: for one thing, functions and modules imported into the global scope can be used by methods, as well as functions and classes defined in it. Usually, the class containing the method is itself defined in this global scope, and in the next section we’ll find some good reasons why a method would want to reference its own class.

Each value is an object, and therefore has a class (also called its type). It is stored as object.class.

9.5. Inheritance
Of course, a language feature would not be worthy of the name “class” without supporting inheritance. The syntax for a derived class definition looks like this:

class DerivedClassName(BaseClassName):

.
.
.
The name BaseClassName must be defined in a scope containing the derived class definition. In place of a base class name, other arbitrary expressions are also allowed. This can be useful, for example, when the base class is defined in another module:

class DerivedClassName(modname.BaseClassName):Execution of a derived class definition proceeds the same as for a base class. When the class object is constructed, the base class is remembered. This is used for resolving attribute references: if a requested attribute is not found in the class, the search proceeds to look in the base class. This rule is applied recursively if the base class itself is derived from some other class.

There’s nothing special about instantiation of derived classes: DerivedClassName() creates a new instance of the class. Method references are resolved as follows: the corresponding class attribute is searched, descending down the chain of base classes if necessary, and the method reference is valid if this yields a function object.

Derived classes may override methods of their base classes. Because methods have no special privileges when calling other methods of the same object, a method of a base class that calls another method defined in the same base class may end up calling a method of a derived class that overrides it. (For C++ programmers: all methods in Python are effectively virtual.)

An overriding method in a derived class may in fact want to extend rather than simply replace the base class method of the same name. There is a simple way to call the base class method directly: just call BaseClassName.methodname(self, arguments). This is occasionally useful to clients as well. (Note that this only works if the base class is accessible as BaseClassName in the global scope.)

Python has two built-in functions that work with inheritance:

Use isinstance() to check an instance’s type: isinstance(obj, int) will be True only if obj.class is int or some class derived from int.
Use issubclass() to check class inheritance: issubclass(bool, int) is True since bool is a subclass of int. However, issubclass(unicode, str) is False since unicode is not a subclass of str (they only share a common ancestor, basestring).
9.5.1. Multiple Inheritance
Python supports a limited form of multiple inheritance as well. A class definition with multiple base classes looks like this:

class DerivedClassName(Base1, Base2, Base3):

.
.
.
For old-style classes, the only rule is depth-first, left-to-right. Thus, if an attribute is not found in DerivedClassName, it is searched in Base1, then (recursively) in the base classes of Base1, and only if it is not found there, it is searched in Base2, and so on.

(To some people breadth first — searching Base2 and Base3 before the base classes of Base1 — looks more natural. However, this would require you to know whether a particular attribute of Base1 is actually defined in Base1 or in one of its base classes before you can figure out the consequences of a name conflict with an attribute of Base2. The depth-first rule makes no differences between direct and inherited attributes of Base1.)

For new-style classes, the method resolution order changes dynamically to support cooperative calls to super(). This approach is known in some other multiple-inheritance languages as call-next-method and is more powerful than the super call found in single-inheritance languages.

With new-style classes, dynamic ordering is necessary because all cases of multiple inheritance exhibit one or more diamond relationships (where at least one of the parent classes can be accessed through multiple paths from the bottommost class). For example, all new-style classes inherit from object, so any case of multiple inheritance provides more than one path to reach object. To keep the base classes from being accessed more than once, the dynamic algorithm linearizes the search order in a way that preserves the left-to-right ordering specified in each class, that calls each parent only once, and that is monotonic (meaning that a class can be subclassed without affecting the precedence order of its parents). Taken together, these properties make it possible to design reliable and extensible classes with multiple inheritance. For more detail, see http://www.python.org/download/releases/2.3/mro/.

9.6. Private Variables and Class-local References
“Private” instance variables that cannot be accessed except from inside an object don’t exist in Python. However, there is a convention that is followed by most Python code: a name prefixed with an underscore (e.g. _spam) should be treated as a non-public part of the API (whether it is a function, a method or a data member). It should be considered an implementation detail and subject to change without notice.

Since there is a valid use-case for class-private members (namely to avoid name clashes of names with names defined by subclasses), there is limited support for such a mechanism, called name mangling. Any identifier of the form __spam (at least two leading underscores, at most one trailing underscore) is textually replaced with _classname__spam, where classname is the current class name with leading underscore(s) stripped. This mangling is done without regard to the syntactic position of the identifier, as long as it occurs within the definition of a class.

Name mangling is helpful for letting subclasses override methods without breaking intraclass method calls. For example:

class Mapping:
def init(self, iterable):
self.items_list = []
self.__update(iterable)

def update(self, iterable):
    for item in iterable:
        self.items_list.append(item)

__update = update   # private copy of original update() method

class MappingSubclass(Mapping):

def update(self, keys, values):
    # provides new signature for update()
    # but does not break __init__()
    for item in zip(keys, values):
        self.items_list.append(item)

Note that the mangling rules are designed mostly to avoid accidents; it still is possible to access or modify a variable that is considered private. This can even be useful in special circumstances, such as in the debugger.

Notice that code passed to exec, eval() or execfile() does not consider the classname of the invoking class to be the current class; this is similar to the effect of the global statement, the effect of which is likewise restricted to code that is byte-compiled together. The same restriction applies to getattr(), setattr() and delattr(), as well as when referencing dict directly.

9.7. Odds and Ends
Sometimes it is useful to have a data type similar to the Pascal “record” or C “struct”, bundling together a few named data items. An empty class definition will do nicely:

class Employee:
pass

john = Employee() # Create an empty employee record

Fill the fields of the record

john.name = 'John Doe'
john.dept = 'computer lab'
john.salary = 1000
A piece of Python code that expects a particular abstract data type can often be passed a class that emulates the methods of that data type instead. For instance, if you have a function that formats some data from a file object, you can define a class with methods read() and readline() that get the data from a string buffer instead, and pass it as an argument.

Instance method objects have attributes, too: m.im_self is the instance object with the method m(), and m.im_func is the function object corresponding to the method.

9.8. Exceptions Are Classes Too
User-defined exceptions are identified by classes as well. Using this mechanism it is possible to create extensible hierarchies of exceptions.

There are two new valid (semantic) forms for the raise statement:

raise Class, instance

raise instance
In the first form, instance must be an instance of Class or of a class derived from it. The second form is a shorthand for:

raise instance.class, instance
A class in an except clause is compatible with an exception if it is the same class or a base class thereof (but not the other way around — an except clause listing a derived class is not compatible with a base class). For example, the following code will print B, C, D in that order:

class B:
pass
class C(B):
pass
class D(C):
pass

for c in [B, C, D]:
try:
raise c()
except D:
print "D"
except C:
print "C"
except B:
print "B"
Note that if the except clauses were reversed (with except B first), it would have printed B, B, B — the first matching except clause is triggered.

When an error message is printed for an unhandled exception, the exception’s class name is printed, then a colon and a space, and finally the instance converted to a string using the built-in function str().

9.9. Iterators
By now you have probably noticed that most container objects can be looped over using a for statement:

for element in [1, 2, 3]:
print element
for element in (1, 2, 3):
print element
for key in {'one':1, 'two':2}:
print key
for char in "123":
print char
for line in open("myfile.txt"):
print line,
This style of access is clear, concise, and convenient. The use of iterators pervades and unifies Python. Behind the scenes, the for statement calls iter() on the container object. The function returns an iterator object that defines the method next() which accesses elements in the container one at a time. When there are no more elements, next() raises a StopIteration exception which tells the for loop to terminate. This example shows how it all works:

s = 'abc'
it = iter(s)
it
<iterator object at 0x00A1DB50>
it.next()
'a'
it.next()
'b'
it.next()
'c'
it.next()
Traceback (most recent call last):
File "", line 1, in ?
it.next()
StopIteration
Having seen the mechanics behind the iterator protocol, it is easy to add iterator behavior to your classes. Define an iter() method which returns an object with a next() method. If the class defines next(), then iter() can just return self:

class Reverse:
"""Iterator for looping over a sequence backwards."""
def init(self, data):
self.data = data
self.index = len(data)
def iter(self):
return self
def next(self):
if self.index == 0:
raise StopIteration
self.index = self.index - 1
return self.data[self.index]

rev = Reverse('spam')
iter(rev)
<main.Reverse object at 0x00A1DB50>
for char in rev:
... print char
...
m
a
p
s
9.10. Generators
Generators are a simple and powerful tool for creating iterators. They are written like regular functions but use the yield statement whenever they want to return data. Each time next() is called, the generator resumes where it left-off (it remembers all the data values and which statement was last executed). An example shows that generators can be trivially easy to create:

def reverse(data):
for index in range(len(data)-1, -1, -1):
yield data[index]

for char in reverse('golf'):
... print char
...
f
l
o
g
Anything that can be done with generators can also be done with class based iterators as described in the previous section. What makes generators so compact is that the iter() and next() methods are created automatically.

Another key feature is that the local variables and execution state are automatically saved between calls. This made the function easier to write and much more clear than an approach using instance variables like self.index and self.data.

In addition to automatic method creation and saving program state, when generators terminate, they automatically raise StopIteration. In combination, these features make it easy to create iterators with no more effort than writing a regular function.

9.11. Generator Expressions
Some simple generators can be coded succinctly as expressions using a syntax similar to list comprehensions but with parentheses instead of brackets. These expressions are designed for situations where the generator is used right away by an enclosing function. Generator expressions are more compact but less versatile than full generator definitions and tend to be more memory friendly than equivalent list comprehensions.

Examples:

sum(i*i for i in range(10)) # sum of squares
285

xvec = [10, 20, 30]
yvec = [7, 5, 3]
sum(x*y for x,y in zip(xvec, yvec)) # dot product
260

from math import pi, sin
sine_table = dict((x, sin(x*pi/180)) for x in range(0, 91))

unique_words = set(word for line in page for word in line.split())

valedictorian = max((student.gpa, student.name) for student in graduates)

data = 'golf'
list(data[i] for i in range(len(data)-1,-1,-1))
['f', 'l', 'o', 'g']
Footnotes

[1] Except for one thing. Module objects have a secret read-only attribute called dict which returns the dictionary used to implement the module’s namespace; the name dict is an attribute but not a global name. Obviously, using this violates the abstraction of namespace implementation, and should be restricted to things like post-mortem debuggers.

posted @ 2014-12-09 20:05  Mx.Hu  阅读(476)  评论(0编辑  收藏  举报