redis 5.0.2 源码阅读——压缩列表ziplist

redis中压缩列表ziplist相关的文件为:ziplist.h与ziplist.c

压缩列表是redis专门开发出来为了节约内存的内存编码数据结构。源码中关于压缩列表介绍的注释也写得比较详细。

一、数据结构

压缩列表的整体结构如下

1 /*
2 <zlbytes> <zltail> <zllen> <entry> <entry> ... <entry> <zlend>
3 */

各个部分的含义

关于entry

 1 /**
 2  * We use this function to receive information about a ziplist entry.
 3  * Note that this is not how the data is actually encoded, is just what we
 4  * get filled by a function in order to operate more easily.
 5  */
 6 typedef struct zlentry {
 7     unsigned int prevrawlensize; /* Bytes used to encode the previous entry len*/
 8     unsigned int prevrawlen;     /* Previous entry len. */
 9     unsigned int lensize;        /* Bytes used to encode this entry type/len.
10                                     For example strings have a 1, 2 or 5 bytes
11                                     header. Integers always use a single byte.*/
12     unsigned int len;            /* Bytes used to represent the actual entry.
13                                     For strings this is just the string length
14                                     while for integers it is 1, 2, 3, 4, 8 or
15                                     0 (for 4 bit immediate) depending on the
16                                     number range. */
17     unsigned int headersize;     /* prevrawlensize + lensize. */
18     unsigned char encoding;      /* Set to ZIP_STR_* or ZIP_INT_* depending on
19                                     the entry encoding. However for 4 bits
20                                     immediate integers this can assume a range
21                                     of values and must be range-checked. */
22     unsigned char *p;            /* Pointer to the very start of the entry, that
23                                     is, this points to prev-entry-len field. */
24 } zlentry;

借用redis源码注释的结构简化一下

1 /*
2 <prevlen> <encoding> [<entry-data>]
3 */

  prevlen表示的是前一个entry的长度,用于反向遍历,即从最后一个元素遍历到第一个元素。因每个entry的长度是不确定的,所以要记录一下前一个entry的长度。prevlen本身的长度也是不定的,与前一entry的实际长度有关。若长度小于254,只需要1B就可以了。若实际长度大于等于254,则需要5B,第1B固定为254,后面4B存储实际长度

encoding则与entry存储的data有关。

encoding前两位 encoding内容 encoding长度 entry-data类型 entry-data长度
00 |00pppppp| 1B string 6b能表示的数字,0~63,encoding中存储的长度为大端字节序
01 |01pppppp|qqqqqqqq| 2B string 14b能表示的数字,64~16383,encoding中存储的长度为大端字节序
10 |10000000|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt| 5B string int32能表示的数字,16384~2^32-1,encoding中存储的长度为大端字节序
11 |11000000| 1B int16 2B
11 |11010000| 1B int32 4B
11 |11100000| 1B int64 8B
11 |11110000| 1B int24 3B
11 |11111110| 1B int8 1B
11 |1111xxxx| 1B xxxx在[0001,1101]之间,表示0~12的数字,存储时进行+1操作
11 |11111111| 1B End of ziplist special entry(源码注释)

 如一个具体的ziplist,有两个成员“2”与“5”

1 /*
2 [0f 00 00 00] [0c 00 00 00] [02 00] [00 f3] [02 f6] [ff]
3       |             |          |       |       |     |
4    zlbytes        zltail     zllen    "2"     "5"   end
5 */

  zlbytes值为15,表示这个ziplist总长为15B

  zltail的值为12,表示最后一个entry的偏移量为12

  zllen的值为2,表示一共有两个entry

  第一个entry的prevlen为0。因为第一个成员之前没有其它成员了,所以是0,占1B。值为“2”,可以用数字表示,且是介于[0,12]之间,故使用1111xxxx的encoding方式,无entry-data。2的二进制编码为0010,+1后为0011,实际为11110011,即0xF3。同理,5的encoding为0xF6。做为第二个entry,其前一个entry的总长为2,故其prevlen值为2。

  zlend固定是0xFF。

二、基本操作

redis中使用了大量的宏定义与函数配合操作ziplist。

2.1 创建

一些重要的宏定义

 1 /**
 2  * Return total bytes a ziplist is composed of.
 3  * 返回组成压缩列表的总的字节数
 4  */
 5 #define ZIPLIST_BYTES(zl)       (*((uint32_t*)(zl)))
 6 
 7 /**
 8  * Return the offset of the last item inside the ziplist.
 9  * 返回最后一个元素在压缩列表中的偏移量
10  */
11 #define ZIPLIST_TAIL_OFFSET(zl) (*((uint32_t*)((zl)+sizeof(uint32_t))))
12 
13 /**
14  * Return the length of a ziplist, or UINT16_MAX if the length cannot be
15  * determined without scanning the whole ziplist.
16  * 返回压缩列表中entry的数量
17  */
18 #define ZIPLIST_LENGTH(zl)      (*((uint16_t*)((zl)+sizeof(uint32_t)*2)))
19 
20 /**
21  * The size of a ziplist header: two 32 bit integers for the total
22  * bytes count and last item offset. One 16 bit integer for the number
23  * of items field.
24  * 返回压缩列表头部的大小:zlbytes + zltail + zllen ----- 4 + 4 + 2
25  */
26 #define ZIPLIST_HEADER_SIZE     (sizeof(uint32_t)*2+sizeof(uint16_t))
27 
28 /**
29  * Size of the "end of ziplist" entry. Just one byte.
30  * 返回压缩列表尾部的大小:1个字节
31  */
32 #define ZIPLIST_END_SIZE        (sizeof(uint8_t))
33 
34 /**
35  * Return the pointer to the first entry of a ziplist.
36  * 返回指向压缩列表中第一个entry的指针
37  */
38 #define ZIPLIST_ENTRY_HEAD(zl)  ((zl)+ZIPLIST_HEADER_SIZE)
39 
40 /**
41  * Return the pointer to the last entry of a ziplist, using the
42  * last entry offset inside the ziplist header.
43  * 返回指向压缩列表中最后一个entry的指针
44  */
45 #define ZIPLIST_ENTRY_TAIL(zl)  ((zl)+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl)))
46 
47 /**
48  * Return the pointer to the last byte of a ziplist, which is, the
49  * end of ziplist FF entry.
50  * 返回指向压缩列表中最后一个自己的指针
51  */
52 #define ZIPLIST_ENTRY_END(zl)   ((zl)+intrev32ifbe(ZIPLIST_BYTES(zl))-1)
53 
54 /**
55  * Increment the number of items field in the ziplist header. Note that this
56  * macro should never overflow the unsigned 16 bit integer, since entries are
57  * always pushed one at a time. When UINT16_MAX is reached we want the count
58  * to stay there to signal that a full scan is needed to get the number of
59  * items inside the ziplist.
60  * 压缩列表中entry的数量增加incr,但是不可以超过UINT16_MAX,也就是2个字节
61  */
62 #define ZIPLIST_INCR_LENGTH(zl,incr) { \
63     if (ZIPLIST_LENGTH(zl) < UINT16_MAX) \
64         ZIPLIST_LENGTH(zl) = intrev16ifbe(intrev16ifbe(ZIPLIST_LENGTH(zl))+incr); \
65 }

创建函数

 1 /**
 2  * Create a new empty ziplist.
 3  * 创建一个压缩列表
 4  */
 5 unsigned char *ziplistNew(void) {
 6     //zlbytes + zltail + zllen + zlend ----- 4 + 4 + 2 + 1
 7     unsigned int bytes = ZIPLIST_HEADER_SIZE+1;
 8     //分配内存
 9     unsigned char *zl = zmalloc(bytes);
10     //设置压缩列表中的zlbytes
11     ZIPLIST_BYTES(zl) = intrev32ifbe(bytes);
12     //设置最后一个元素的偏移量zltail
13     ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(ZIPLIST_HEADER_SIZE);
14     //设置entry的数量
15     ZIPLIST_LENGTH(zl) = 0;
16     //设置帧结束符0xFF
17     zl[bytes-1] = ZIP_END;
18     return zl;
19 }

新创建的ziplist,没有entry,只有zlbytes、zltail、zllen与zlend

1 /*
2 [0b 00 00 00] [0a 00 00 00] [00 00] [ff]
3       |             |          |     |
4    zlbytes        zltail     zllen  end
5 */

2.2 插入

底层插入实现函数

  1 /**
  2  * Insert item at "p".
  3  * 在位置p处插入元素
  4  */
  5 unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
  6     size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), reqlen;
  7     unsigned int prevlensize, prevlen = 0;
  8     size_t offset;
  9     int nextdiff = 0;
 10     unsigned char encoding = 0;
 11     long long value = 123456789; /* initialized to avoid warning. Using a value
 12                                     that is easy to see if for some reason
 13                                     we use it uninitialized. */
 14     zlentry tail;
 15 
 16     /**
 17      * Find out prevlen for the entry that is inserted.
 18      * 为了出入元素,获取所要插入位置当前节点的prevlen和prevlensize
 19      */
 20     if (p[0] != ZIP_END) {//如果不是插在尾部
 21         //取出前一个entry所占的字节数
 22         ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
 23     } else {//如果是插在尾部
 24         //得到指向最后一个entry的指针
 25         unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl);
 26         if (ptail[0] != ZIP_END) {//如果链表不为空
 27             //计算所有entry所占的字节数
 28             prevlen = zipRawEntryLength(ptail);
 29         }
 30     }
 31 
 32     /**
 33      * See if the entry can be encoded
 34      * 对entry尝试使用数字编码
 35      */
 36     if (zipTryEncoding(s,slen,&value,&encoding)) {
 37         /* 'encoding' is set to the appropriate integer encoding 'encoding' 设置为适当的整数编码*/
 38         reqlen = zipIntSize(encoding);
 39     } else {
 40         /**
 41          * 'encoding' is untouched, however zipStoreEntryEncoding will use the
 42          * string length to figure out how to encode it.
 43          * 'encoding' 未受影响,但是 zipStoreEntryEncoding 将使用字符串长度来确定如何对其进行编码。
 44          */
 45         reqlen = slen;
 46     }
 47     /**
 48      * We need space for both the length of the previous entry and
 49      * the length of the payload.
 50      * 获得本entry的总长度,即prevlen、encoding、entry-data长度和。
 51      */
 52     reqlen += zipStorePrevEntryLength(NULL,prevlen);
 53     reqlen += zipStoreEntryEncoding(NULL,encoding,slen);
 54 
 55     /**
 56      * When the insert position is not equal to the tail, we need to
 57      * make sure that the next entry can hold this entry's length in
 58      * its prevlen field.
 59      * 当插入位置不是结尾时,判断一下插入后,后一个entry的prevlen是否足够存储新entry的长度。
 60      * 此处需要注意,如果原本是5B的prevlen,当前1B就足够存储,则不做任何处理,强制使用5B来存储1B能存储的数字。
 61      * 而如果原来是1B,当前要5B,则还需要4B空间。
 62      */
 63     int forcelarge = 0;
 64     nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0;
 65     if (nextdiff == -4 && reqlen < 4) {
 66         nextdiff = 0;
 67         forcelarge = 1;
 68     }
 69 
 70     /* Store offset because a realloc may change the address of zl. */
 71     offset = p-zl;
 72     zl = ziplistResize(zl,curlen+reqlen+nextdiff);
 73     p = zl+offset;
 74 
 75     /**
 76      * Apply memory move when necessary and update tail offset.
 77      * 重新分配ziplist空间。新增加的字节数。
 78      */
 79     if (p[0] != ZIP_END) {
 80         /* Subtract one because of the ZIP_END bytes 移动压缩列表中的元素到正确位置*/
 81         memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff);
 82 
 83         /* Encode this entry's raw length in the next entry. 修正插入位置entry的prevlen*/
 84         if (forcelarge)
 85             zipStorePrevEntryLengthLarge(p+reqlen,reqlen);
 86         else
 87             zipStorePrevEntryLength(p+reqlen,reqlen);
 88 
 89         /* Update offset for tail 修改zltail*/
 90         ZIPLIST_TAIL_OFFSET(zl) =
 91             intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+reqlen);
 92 
 93         /**
 94          * When the tail contains more than one entry, we need to take
 95          * "nextdiff" in account as well. Otherwise, a change in the
 96          * size of prevlen doesn't have an effect on the *tail* offset.
 97          * 如果需要的话更新插入位置之后的每一个entry的prevlen
 98          */
 99         zipEntry(p+reqlen, &tail);
100         if (p[reqlen+tail.headersize+tail.len] != ZIP_END) {
101             ZIPLIST_TAIL_OFFSET(zl) =
102                 intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
103         }
104     } else {
105         /* This element will be the new tail. 如果元素是插在尾部*/
106         ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(p-zl);
107     }
108 
109     /* When nextdiff != 0, the raw length of the next entry has changed, so
110      * we need to cascade the update throughout the ziplist */
111     if (nextdiff != 0) {
112         offset = p-zl;
113         zl = __ziplistCascadeUpdate(zl,p+reqlen);
114         p = zl+offset;
115     }
116 
117     /* Write the entry 填写新entry*/
118     p += zipStorePrevEntryLength(p,prevlen);
119     p += zipStoreEntryEncoding(p,encoding,slen);
120     if (ZIP_IS_STR(encoding)) {
121         memcpy(p,s,slen);
122     } else {
123         zipSaveInteger(p,value,encoding);
124     }
125     ZIPLIST_INCR_LENGTH(zl,1);
126     return zl;
127 }

被用户使用的ziplistInsert和ziplistPush函数调用

ziplistInsert函数

1 /* Insert an entry at "p". 在位置p插入一个entry*/
2 unsigned char *ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
3     return __ziplistInsert(zl,p,s,slen);
4 }

 

ziplistPush函数

1 unsigned char *ziplistPush(unsigned char *zl, unsigned char *s, unsigned int slen, int where) {
2     unsigned char *p;
3     p = (where == ZIPLIST_HEAD) ? ZIPLIST_ENTRY_HEAD(zl) : ZIPLIST_ENTRY_END(zl);
4     return __ziplistInsert(zl,p,s,slen);
5 }

假设有以下ziplist

1 /*
2 [0f 00 00 00] [0c 00 00 00] [02 00] [00 f3] [02 f6] [ff]
3       |             |          |       |       |     |
4    zlbytes        zltail     zllen    "2"     "5"   end
5 */

要在"2"与"5"之间插入节点“3”,则:

  a.获取所要插入位置当前节点“5”的prevlen=2,prevlen_size=1

    若要插入的位置是end处,则取出zltail进行偏移,取到“5”节点,直接进行计算。而如果当前是个空ziplist,直接就是0了。

  b.获取节点“3”的实际长度,若其为纯数字,则可以使用数字存储,节约内存。否则直接使用外部传入的,string的长度。

这里有一点:

 1 int zipTryEncoding(unsigned char *entry, unsigned int entrylen, long long *v, unsigned char *encoding) {
 2     long long value;
 3 
 4     if (entrylen >= 32 || entrylen == 0) return 0;
 5     if (string2ll((char*)entry,entrylen,&value)) {
 6         /* Great, the string can be encoded. Check what's the smallest
 7          * of our encoding types that can hold this value. */
 8         if (value >= 0 && value <= 12) {
 9             *encoding = ZIP_INT_IMM_MIN+value;
10         } else if (value >= INT8_MIN && value <= INT8_MAX) {
11             *encoding = ZIP_INT_8B;
12         } else if (value >= INT16_MIN && value <= INT16_MAX) {
13             *encoding = ZIP_INT_16B;
14         } else if (value >= INT24_MIN && value <= INT24_MAX) {
15             *encoding = ZIP_INT_24B;
16         } else if (value >= INT32_MIN && value <= INT32_MAX) {
17             *encoding = ZIP_INT_32B;
18         } else {
19             *encoding = ZIP_INT_64B;
20         }
21         *v = value;
22         return 1;
23     }
24     return 0;
25 }

在尝试使用数字编码的时候,如果len >= 32,则直接不尝试,并不清楚这个32是怎么来的。

本例中,“3”可以直接使用数字编码,且在[0,12]之间,故没有entry-data

c.获得本entry的总长度,即prevlen、encoding、entry-data长度和。本处为1+1=2

d.判断一下插入后,后一个entry的prevlen是否足够存储新entry的长度。新长度为2,原entry的prevlen只有1B,足够。

此处需要注意,如果原本是5B的prevlen,当前1B就足够存储,则不做任何处理,强制使用5B来存储1B能存储的数字。而如果原来是1B,当前要5B,则还需要4B空间。

e.重新分配ziplist空间。新增加的字节数,为c、d两步之和。此处只需要额外2B的空间。

分配空间后:

1 /*
2 [11 00 00 00] [0c 00 00 00] [02 00] [00 f3] [02 f6] [ff] [00 ff]
3       |             |          |       |       |     |
4    zlbytes        zltail     zllen    "2"     "5"   end
5 */

重新分配空间会自动设置zlend与zlbytes

f.将“5”及之后的节点(不包括zlend)往后移:

1 /*
2 [11 00 00 00] [0c 00 00 00] [02 00] [00 f3] [02 f6] [02 f6] [ff]
3       |             |          |       |       |       |
4    zlbytes        zltail     zllen    "2"     "5"     "5"  
5 */

g.修正当前“5”所在位置的prevlen=2:

1 /*
2 [11 00 00 00] [0c 00 00 00] [02 00] [00 f3] [02 f6] [02 f6] [ff]
3       |             |          |       |       |       |
4    zlbytes        zltail     zllen    "2"     "5"     "5"  
5 */

h.修改zltail:

1 /*
2 [11 00 00 00] [0e 00 00 00] [02 00] [00 f3] [02 f6] [02 f6] [ff]
3       |             |          |       |       |       |
4    zlbytes        zltail     zllen    "2"     "5"     "5"  
5 */

i.填写新entry:

1 /*
2 [11 00 00 00] [0e 00 00 00] [03 00] [00 f3] [02 f4] [02 f6] [ff]
3       |             |          |       |       |       |
4    zlbytes        zltail     zllen    "2"     "3"     "5"  
5 */

若在此基础上,在“3”前,插入的是一个长度为256的string X,则:

a.获取“3”的prevlen与prevlen_size

prevlen=2,prevlen_size=1

b.长度大于32,使用string进行存储,实际长度data_len=256

c.获取entry总长度

此处prevlen长度为1B,encoding长度为2B ,entry-data长度为256B,共1+2+256=259

d.判断一下插入后,后一个entry的prevlen是否足够存储新entry的长度。新长度为259,超过了254,需要5B,而原本只有1B,还差了4B。即,nextdiff=4

e.分配空间。新增加字节数为259+4=263,共280B,即0x118

分配空间后:

1 /*
2 [0x118] [0xe] [03 00] [00 f3] [02 f4] [02 f6] [...] [ff]
3    |      |      |       |       |       |      |   
4 zlbytes zltail zllen    "2"     "3"     "5"    263B
5    4B     4B
6 */

f.memmove操作

ziplist中的memmove操作

1 memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff);

操作完之后

1 /*
2 [...] [00 f3] [02 f4] [02 f6] [...] [03 00] [00 f3] [02 f4] [02 f6] [ff]
3   |      |       |       |      |              |       |       |
4 header  "2"     "3"     "5"    255B           "2"     "3"     "5"  
5  10B 
6 */

其中header为zlbytes、zltail与tllen

其实与以下写法相同效果:

1 memmove(p+reqlen+nextdiff,p,curlen-offset-1+nextdiff);

这种写法操作完之后:

1 /*
2 [0x118] [0xe] [03 00] [00 f3] [02 f4] [02 f6] [...] [02 f4] [02 f6] [ff]
3    |      |      |       |       |       |      |      |       |
4 zlbytes zltail zllen    "2"     "3"     "5"    259B   "3"     "5"  
5    4B     4B
6 */

目的是一样的,把原来的节点移至正确的位置上。

g.修正当前“3”所在位置的prevlen=259,即0X103:

1 /*
2 [0x118] [0xe] [03 00] [00 f3] [...] [FE 03 01 00 00 f4] [02 f6] [ff]
3    |      |      |       |      |            |             |
4 zlbytes zltail zllen    "2"    259B         "3"           "5"  
5    4B     4B
6 */

h.此时节点"3"的长度发生变化,需要更新其后一个节点"5"的prevlen

1 /*
2 [0x118] [0xe] [03 00] [00 f3] [...] [FE 03 01 00 00 f4] [06 f6] [ff]
3    |      |      |       |      |            |             |
4 zlbytes zltail zllen    "2"    259B         "3"           "5"  
5    4B     4B
6 */

i.修改zltail

1 /*
2 [0x118] [0x115] [03 00] [00 f3] [...] [FE 00 00 01 03 f4] [06 f6] [ff]
3    |       |       |       |      |            |             |
4 zlbytes  zltail  zllen    "2"    259B         "3"           "5"  
5    4B      4B
6 */

j.填写新entry:

encoding值为:01000001 00000000 即0x4100,大端字节序

填写后:

1 /*
2 [0x118] [0x115] [03 00] [00 f3] [02 41 00 ...] [FE 00 00 01 03 f4] [06 f6] [ff]
3    |       |       |       |          |                 |             |
4 zlbytes  zltail  zllen    "2"         X                "3"           "5"  
5    4B      4B                        259B
6 */

k.更新zllen

1 /*
2 [0x118] [0x115] [04 00] [00 f3] [02 41 00 ...] [FE 00 00 01 03 f4] [06 f6] [ff]
3    |       |       |       |          |                 |             |
4 zlbytes  zltail  zllen    "2"         X                "3"           "5"  
5    4B      4B                        259B
6 */

若有连续几个entry的长度在[250,253]B之间,在插入新节点后可能存在连锁更新的情况。

如以下ziplist(只保留部分entry,其余节点省略):

1 /*
2 ... [FD 40 FA ...] [FD 40 FA ...] ...
3           |              |
4        E1 253B        E2 253B
5 */

E1的prevlen为FD,即长度为253。此时在E1之前插入一个长度为256的节点,E1需要增加prevlen的长度,从而导致E1整体长度增加。

E2的prevlen为FD,即E1的长度为253。增加4个节点之后为257,E2也需要增加prevlen的长度。

之后还可能会有E3,E4等entry需要处理,产生了连锁反应,直到到了以下情况才会停止:

i.到了zlend

ii.不需要继续扩展

iii.需要减少prevlen字节数时

连锁更新时需要多次重新分配空间,最坏情况下有n个节点的ziplist,需要分配n次空间,而每次分配的最坏情况时间复杂度为O(n),故连锁更新的最坏情况时间复杂度为O(n^2)。

2.3 查找

  ziplist的查找过程其实是一次遍历,依次解析出prevlen、encoding与entry-data,然后根据encoding类型,决定是要用strcmp,还是直接使用数字的比较。在首次进行数字比较的时候,会把传入要查找的串,尝试一次转换成数字的操作。如果无法转换,就会跳过数字比较操作

查找操作支持每隔几个entry才做一次比较操作。如,查找每5个entry中,值为“1”的entry。

ziplistFind函数
 1 /**
 2  * Find pointer to the entry equal to the specified entry. Skip 'skip' entries
 3  * between every comparison. Returns NULL when the field could not be found.
 4  *
 5  * ziplist的查找过程其实是一次遍历,依次解析出prevlen、encoding与entry-data,然后根据encoding类型,
 6  * 决定是要用strcmp,还是直接使用数字的比较。在首次进行数字比较的时候,会把传入要查找的串,
 7  * 尝试一次转换成数字的操作。如果无法转换,就会跳过数字比较操作。
 8  *
 9  * 查找操作支持每隔几个entry才做一次比较操作。
10  */
11 unsigned char *ziplistFind(unsigned char *p, unsigned char *vstr, unsigned int vlen, unsigned int skip) {
12     int skipcnt = 0;
13     unsigned char vencoding = 0;
14     long long vll = 0;
15 
16     while (p[0] != ZIP_END) {
17         unsigned int prevlensize, encoding, lensize, len;
18         unsigned char *q;
19 
20         ZIP_DECODE_PREVLENSIZE(p, prevlensize);
21         ZIP_DECODE_LENGTH(p + prevlensize, encoding, lensize, len);
22         q = p + prevlensize + lensize;
23 
24         if (skipcnt == 0) {
25             /* Compare current entry with specified entry */
26             if (ZIP_IS_STR(encoding)) {
27                 if (len == vlen && memcmp(q, vstr, vlen) == 0) {
28                     return p;
29                 }
30             } else {
31                 /* Find out if the searched field can be encoded. Note that
32                  * we do it only the first time, once done vencoding is set
33                  * to non-zero and vll is set to the integer value. */
34                 if (vencoding == 0) {
35                     if (!zipTryEncoding(vstr, vlen, &vll, &vencoding)) {
36                         /* If the entry can't be encoded we set it to
37                          * UCHAR_MAX so that we don't retry again the next
38                          * time. */
39                         vencoding = UCHAR_MAX;
40                     }
41                     /* Must be non-zero by now */
42                     assert(vencoding);
43                 }
44 
45                 /* Compare current entry with specified entry, do it only
46                  * if vencoding != UCHAR_MAX because if there is no encoding
47                  * possible for the field it can't be a valid integer. */
48                 if (vencoding != UCHAR_MAX) {
49                     long long ll = zipLoadInteger(q, encoding);
50                     if (ll == vll) {
51                         return p;
52                     }
53                 }
54             }
55 
56             /* Reset skip count */
57             skipcnt = skip;
58         } else {
59             /* Skip entry */
60             skipcnt--;
61         }
62 
63         /* Move to next entry */
64         p = q + len;
65     }
66 
67     return NULL;
68 }

2.4 删

底层实现的删除函数

 1 /**
 2  * Delete "num" entries, starting at "p". Returns pointer to the ziplist. 
 3  * 底层的删除函数
 4  * num:删除的元素的个数
 5  * p:删除的元素数组
 6 */
 7 unsigned char *__ziplistDelete(unsigned char *zl, unsigned char *p, unsigned int num) {
 8     unsigned int i, totlen, deleted = 0;
 9     size_t offset;
10     int nextdiff = 0;
11     zlentry first, tail;
12 
13     zipEntry(p, &first);
14     for (i = 0; p[0] != ZIP_END && i < num; i++) {
15         p += zipRawEntryLength(p);
16         deleted++;
17     }
18 
19     totlen = p-first.p; /* Bytes taken by the element(s) to delete. */
20     if (totlen > 0) {
21         if (p[0] != ZIP_END) {
22             /* Storing `prevrawlen` in this entry may increase or decrease the
23              * number of bytes required compare to the current `prevrawlen`.
24              * There always is room to store this, because it was previously
25              * stored by an entry that is now being deleted. */
26             nextdiff = zipPrevLenByteDiff(p,first.prevrawlen);
27 
28             /* Note that there is always space when p jumps backward: if
29              * the new previous entry is large, one of the deleted elements
30              * had a 5 bytes prevlen header, so there is for sure at least
31              * 5 bytes free and we need just 4. */
32             p -= nextdiff;
33             zipStorePrevEntryLength(p,first.prevrawlen);
34 
35             /* Update offset for tail */
36             ZIPLIST_TAIL_OFFSET(zl) =
37                 intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))-totlen);
38 
39             /* When the tail contains more than one entry, we need to take
40              * "nextdiff" in account as well. Otherwise, a change in the
41              * size of prevlen doesn't have an effect on the *tail* offset. */
42             zipEntry(p, &tail);
43             if (p[tail.headersize+tail.len] != ZIP_END) {
44                 ZIPLIST_TAIL_OFFSET(zl) =
45                    intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
46             }
47 
48             /* Move tail to the front of the ziplist */
49             memmove(first.p,p,
50                 intrev32ifbe(ZIPLIST_BYTES(zl))-(p-zl)-1);
51         } else {
52             /* The entire tail was deleted. No need to move memory. */
53             ZIPLIST_TAIL_OFFSET(zl) =
54                 intrev32ifbe((first.p-zl)-first.prevrawlen);
55         }
56 
57         /* Resize and update length */
58         offset = first.p-zl;
59         zl = ziplistResize(zl, intrev32ifbe(ZIPLIST_BYTES(zl))-totlen+nextdiff);
60         ZIPLIST_INCR_LENGTH(zl,-deleted);
61         p = zl+offset;
62 
63         /* When nextdiff != 0, the raw length of the next entry has changed, so
64          * we need to cascade the update throughout the ziplist */
65         if (nextdiff != 0)
66             zl = __ziplistCascadeUpdate(zl,p);
67     }
68     return zl;
69 }

被ziplistDelete和ziplistDeleteRange函数调用

 1 /**
 2  * Delete a single entry from the ziplist, pointed to by *p.
 3  * Also update *p in place, to be able to iterate over the
 4  * ziplist, while deleting entries.
 5  * 从zl指向的 ziplist 中删除单个条目。 同时更新 *p,以便能够在删除条目的同时迭代 ziplist。
 6  */
 7 unsigned char *ziplistDelete(unsigned char *zl, unsigned char **p) {
 8     size_t offset = *p-zl;
 9     zl = __ziplistDelete(zl,*p,1);
10 
11     /* Store pointer to current element in p, because ziplistDelete will
12      * do a realloc which might result in a different "zl"-pointer.
13      * When the delete direction is back to front, we might delete the last
14      * entry and end up with "p" pointing to ZIP_END, so check this. */
15     //删除之后当前位置的元素
16     *p = zl+offset;
17     return zl;
18 }
19 
20 /**
21  * Delete a range of entries from the ziplist.
22  * 从压缩列表中删除一个范围中的所有entries
23  */
24 unsigned char *ziplistDeleteRange(unsigned char *zl, int index, unsigned int num) {
25     unsigned char *p = ziplistIndex(zl,index);
26     return (p == NULL) ? zl : __ziplistDelete(zl,p,num);
27 }

如有以下ziplist:

1 /*
2 [0x118] [0x115] [04 00] [00 f3] [02 41 00 ...] [FE 00 00 01 03 f4] [06 f6] [ff]
3    |       |       |       |          |                 |             |
4 zlbytes  zltail  zllen    "2"         X                "3"           "5"  
5    4B      4B                        259B
6 */

删除的是节点“5”,因是最后一个节点,则只要先修改zltail:

1 /*
2 [0x118] [0x10F] [04 00] [00 f3] [02 41 00 ...] [FE 00 00 01 03 f4] [06 f6] [ff]
3    |       |       |       |          |                 |             |
4 zlbytes  zltail  zllen    "2"         X                "3"           "5"  
5    4B      4B                        259B
6 */

然后resize:

1 /*
2 [0x116] [0x10F] [04 00] [00 f3] [02 41 00 ...] [FE 00 00 01 03 f4] [ff]
3    |       |       |       |          |                 |         
4 zlbytes  zltail  zllen    "2"         X                "3"        
5    4B      4B                        259B
6 */

最后修改zllen即可:

1 /*
2 [0x116] [0x10F] [03 00] [00 f3] [02 41 00 ...] [FE 00 00 01 03 f4] [ff]
3    |       |       |       |          |                 |         
4 zlbytes  zltail  zllen    "2"         X                "3"        
5    4B      4B                        259B
6 */

如果是这个ziplist:

1 /*
2 [0x118] [0x115] [04 00] [00 41 00 ...] [FE 00 00 01 03 f4] [06 f3] [02 f6] [ff]
3    |       |       |          |                 |             |       |
4 zlbytes  zltail  zllen        X                "3"           "2"     "5"  
5    4B      4B                259B
6 */

如果删除是的节点"3",则先要计算删除后,"3"节点后的"2"节点的prevlen长度是否足够,然后直接写入。此时长度不够,并不会直接重新分配空间,而是直接使用之前"3"节的最后4B空间:

1 /*
2 [0x118] [0x115] [04 00] [00 41 00 ...] [FE 00] [FE 00 00 01 03 f3] [02 f6] [ff]
3    |       |       |          |           |             |             |
4 zlbytes  zltail  zllen        X           2B           "2"           "5"  
5    4B      4B                259B
6 */

然后修改zltail:

1 /*
2 [0x118] [0x113] [04 00] [00 41 00 ...] [FE 00] [FE 00 00 01 03 f3] [02 f6] [ff]
3    |       |       |          |           |             |             |
4 zlbytes  zltail  zllen        X           2B           "2"           "5"  
5    4B      4B                259B
6 */

接着进行memmove操作:

1 /*
2 [0x118] [0x113] [04 00] [00 41 00 ...] [FE 00 00 01 03 f3] [02 f6] [02 f6] [ff]
3    |       |       |          |                 |             |       | 
4 zlbytes  zltail  zllen        X                "2"           "5"     "5"
5    4B      4B                259B
6 */

resize操作:

1 /*
2 [0x116] [0x113] [04 00] [00 41 00 ...] [FE 00 00 01 03 f3] [02 f6] [ff]
3    |       |       |          |                 |             |   
4 zlbytes  zltail  zllen        X                "2"           "5"  
5    4B      4B                259B
6 */

最后要更新节点"2"及其之后entry的prevlen:

1 /*
2 [0x116] [0x113] [04 00] [00 41 00 ...] [FE 00 00 01 03 f3] [06 f6] [ff]
3    |       |       |          |                 |             |   
4 zlbytes  zltail  zllen        X                "2"           "5"  
5    4B      4B                259B
6 */

注意此时更新也是有可能产生连锁反应。

删除操作支持删除从指定位置开始,连续n个entry,操作类似。

 参考文章

  https://www.cnblogs.com/chinxi/p/12272173.html

posted @ 2021-07-07 09:25  Mr-xxx  阅读(267)  评论(0编辑  收藏  举报