Logistic回归的使用

Logistic回归的使用和缺失值的处理

从疝气病预测病马的死亡率

数据集:

UCI上的数据,368个样本,28个特征

测试方法:

交叉测试

实现细节:

1.数据中因为存在缺失值所以要进行预处理,这点待会再单独谈
2.数据中本来有三个标签,这里为了简单直接将未能存活和安乐死合并了
3.代码中计算10次求均值

缺失值的处理:

一般来说有这么几种方法处理缺失值:

  • 人工填写缺失值
  • 使用全局变量填充缺失值
  • 忽略有缺失值的样本
  • 使用属性的中心度量(均值或中位数等)填充缺失值
  • 使用与给定元祖同一类的所有样本的属性均值或中位数
  • 使用最可能的值(需要机器学习算法推到)
    对不同的数据我们要采用不同的方法,这里考虑到我们用Logistic回归那么我们可以采用0填充,因为用0在更新weight = weight + alpha * error * dataMatrix[randIndex]的时候不会产生更新,并且sigmoid(0)=0.5,他对结果也不会产生影响。
  1.  1 #coding=utf-8
     2 from numpy import *
     3 
     4 def loadDataSet():
     5     dataMat = []
     6     labelMat = []
     7     fr = open('testSet.txt')
     8     for line in fr.readlines():
     9         lineArr = line.strip().split()
    10         dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
    11         labelMat.append(int(lineArr[2]))
    12     return dataMat, labelMat
    13     
    14 def sigmoid(inX):
    15     return 1.0/(1+exp(-inX))
    16     
    17 def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    18     m,n = shape(dataMatrix)
    19     
    20     #alpha = 0.001
    21     weight = ones(n)
    22     for j in range(numIter):
    23         dataIndex = range(m)
    24         for i in range(m):
    25             alpha = 4/ (1.0+j+i) +0.01
    26             randIndex = int(random.uniform(0,len(dataIndex)))
    27             h = sigmoid(sum(dataMatrix[randIndex]*weight))
    28             error = classLabels[randIndex] - h
    29             weight = weight + alpha * error * dataMatrix[randIndex]
    30             del(dataIndex[randIndex])
    31     return weight
    32 
    33 def classifyVector(inX, weights):
    34     prob = sigmoid(sum(inX*weights))
    35     if prob > 0.5: return 1.0
    36     else: return 0.0
    37 
    38 def colicTest():
    39     frTrain = open('horseColicTraining.txt'); frTest = open('horseColicTest.txt')
    40     trainingSet = []; trainingLabels = []
    41     for line in frTrain.readlines():
    42         currLine = line.strip().split('\t')
    43         lineArr =[]
    44         for i in range(21):
    45             lineArr.append(float(currLine[i]))
    46         trainingSet.append(lineArr)
    47         trainingLabels.append(float(currLine[21]))
    48     trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 1000)
    49     errorCount = 0; numTestVec = 0.0
    50     for line in frTest.readlines():
    51         numTestVec += 1.0
    52         currLine = line.strip().split('\t')
    53         lineArr =[]
    54         for i in range(21):
    55             lineArr.append(float(currLine[i]))
    56         if int(classifyVector(array(lineArr), trainWeights))!= int(currLine[21]):
    57             errorCount += 1
    58     errorRate = (float(errorCount)/numTestVec)
    59     print "the error rate of this test is: %f" % errorRate
    60     return errorRate
    61 
    62 def multiTest():
    63     numTests = 10; errorSum=0.0
    64     for k in range(numTests):
    65         errorSum += colicTest()
    66     print "after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests))
    67             
    68 def main():
    69     multiTest()
    70     
    71 if __name__ == '__main__':
    72     main()

     

    机器学习笔记索引



posted @ 2014-11-25 00:26  mrbean  阅读(1947)  评论(0编辑  收藏  举报