等差数列与等比数列
等差数列 | 等比数列 | |
---|---|---|
定义 | \(a_{n+1} - a_n = d\) | \(\dfrac{a_{n+1}}{a_n}\) |
通项 | \(a_n=a_1+(n-1)d\) | \(a_n=a_1q^{n-1}\) |
等差中项:若a,b,c成等差、比数列,则b叫做a与c的等差中项,且 | \(b=\dfrac{a+c}{2}\) | \(b^2 =ac\) |
等和性:若m+n=p+q,则 | \(a_m+a_n=a_p+a_q\) | \(a_m*a_n=a_p*a_q\) |
前n项和 | \(S_n = \dfrac{n(a_1+a_n)}{2}\) | 当\(q \neq 1\)时,\(S_n = \dfrac{a_1(1-q^n)}{1-q} = \dfrac{a_1-a_nq}{1-q}\),当q = 1时,Sn = na1 |