spoj 1812

1812. Longest Common Substring II

Problem code: LCS2

 

A string is finite sequence of characters over a non-empty finite set Σ.

In this problem, Σ is the set of lowercase letters.

Substring, also called factor, is a consecutive sequence of characters occurrences at least once in a string.

Now your task is a bit harder, for some given strings, find the length of the longest common substring of them.

Here common substring means a substring of two or more strings.

Input

The input contains at most 10 lines, each line consists of no more than 100000 lowercase letters, representing a string.

Output

The length of the longest common substring. If such string doesn't exist, print "0" instead.

Example

Input:

alsdfkjfjkdsal

fdjskalajfkdsla

aaaajfaaaa

Output:

2

大意:

求出多个串的最长公共字串,输出长度.

 

分析:

我们这么想:

我们先拿两个串A,B匹配,然后在两个串的匹配过程中计算出后缀自动机SAM_A中某个节点x能在B中匹配的最长的长度.

那么这个问题就解决了.(我可以继续匹配C,D)最后取个min.

裸地解决这个问题是O(L2)的.

所以我们应用上spoj1811中的性质: parent _x 和 x 节点的最长公共部分是 max_parent_x.

那么我们只要利用孩子的匹配长度就能够直接推出parent的匹配长度. min(Min[par[x]], Max[x])

(Min[x] 表示从x节点开始在当前已经考虑的串中,从x节点出发能够拓展的最长的长度. Max[x] 表示在当前串内, 从x节点出发, 能够匹配的最长的长度.)

值得注意的是,当 Min[par[x]] != 0 && Max[x] != 0 时, Min[par[x]] + 1 <= Max[x].

所以,我们现在的关键在于面对 Max[x] == 0 的情况.

这种情况下,表明从x这个点无法进行拓展,所以自然表示par[x] 也无法进行拓展,因为par是x的极大后缀串.

 所以我们迭代更新Min的值,最后取Min就ok了.

代码中加入了一个特判来验证我的猜想:

偷懒没有用"鸡排"....见谅.

 1 #include<cstdlib>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<cassert>
 6 using namespace std;
 7 const int maxn = (int)1.01e6,sigma = 26;
 8 char str[maxn];
 9 int Min[maxn * 2],Max[maxn * 2],id[maxn * 2];
10 int cmq(int,int);
11 struct Sam{
12     int ch[maxn * 2][sigma],par[maxn * 2],stp[maxn * 2];
13     int sz,last;
14     void init(){
15         sz = last = 1;
16     }
17     void ext(int c){
18         stp[++sz] = stp[last] + 1;
19         int p = last, np = sz;
20         for(; !ch[p][c]; p = par[p]) ch[p][c] = np;
21         if(p == 0) par[np] = 1;
22         else{
23             int q = ch[p][c];
24             if(stp[q] != stp[p] + 1){
25                 stp[++sz] = stp[p] + 1;
26                 int nq = sz;
27                 memcpy(ch[nq],ch[q],sizeof(ch[q]));
28                 par[nq] = par[q];
29                 par[q] = par[np] = nq;
30                 for(; ch[p][c] == q; p = par[p]) ch[p][c] = nq;
31             }
32             else par[np] = q;
33         }
34         last = np;
35     }
36     void ins(char *pt){
37         int i;
38         init();
39         for(i = 0; pt[i]; ++i) ext(pt[i] - 'a');
40     }
41     void prep(){
42         int i;
43         for(i = 1; i <= sz; ++i) Min[i] = stp[i];
44         for(i = 1; i <= sz; ++i) id[i] = i;
45         sort(id + 1, id + sz + 1,cmq); 
46     }
47     void cmp(char *pt){
48         int i,x = 1,cnt = 0;
49         fill(Max, Max + sz + 2, 0);
50         for(i = 0; pt[i]; ++i){
51             if(ch[x][pt[i] - 'a']){
52                 x = ch[x][pt[i] - 'a'];
53                 Max[x] = max(Max[x],++cnt);
54             }
55             else{
56                 while(x != 1 && !ch[x][pt[i] - 'a']) x = par[x], cnt = stp[x];
57                 if(ch[x][pt[i] - 'a']) x = ch[x][pt[i] - 'a'],Max[x] = max(Max[x],++cnt);
58             }
59         }        
60         for(i = 1; i <= sz; ++i){
61             if(id[i] != 1 && Min[par[id[i]]] && Max[id[i]])
62                 assert(Min[par[id[i]]] + 1 <= Max[id[i]]);
63             Min[id[i]] = min(Min[id[i]], Max[id[i]]);            
64             Max[par[id[i]]] = max(Max[par[id[i]]], Max[id[i]]);
65         }
66     }
67 }sam;
68 int cmq(int x,int y){
69     return sam.stp[x] > sam.stp[y];
70 }
71 int main()
72 {
73     freopen("substr.in","r",stdin);
74     freopen("substr.out","w",stdout);
75     scanf("%s",str);
76     sam.ins(str);
77     sam.prep();
78     while(scanf("%s",str) != EOF) 
79         sam.cmp(str);
80     printf("%d\n",*max_element(Min + 1, Min + sam.sz + 1));
81     return 0;
82 }
View Code

 

posted @ 2015-01-09 20:49  Mr.Ren~  阅读(236)  评论(0编辑  收藏  举报