POJ 1741 Tree
点分治
非常巧妙的实现, 复杂度 O(n * log ^2 n)
https://www.cnblogs.com/GXZlegend/p/6641720.html
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstdlib>
#include <cstring>
using namespace std;
const int MAXN = 20005;
int head[MAXN], nume, n, k, siz[MAXN], masize, dep[MAXN];
int gra[MAXN], d[MAXN], tot, rot, ans;
bool f[MAXN];
int init() {
int rv = 0, fh = 1;
char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') fh = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
rv = (rv<<1) + (rv<<3) + c - '0';
c = getchar();
}
return fh * rv;
}
struct edge{
int to, nxt, dis;
}e[MAXN];
void adde(int from, int to, int dis) {
e[++nume].to = to;
e[nume].nxt = head[from];
e[nume].dis = dis;
head[from] = nume;
}
void getroot(int u, int rt) {
gra[u] = 0;
siz[u] = 1;
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if(f[v] || v == rt) continue;
getroot(v, u);
siz[u] += siz[v];
gra[u] = max(gra[u], siz[v]);
}
gra[u] = max(gra[u], masize - siz[u]);
if(gra[rot] > gra[u]) rot = u;
}
void getdep(int u, int rt) {
d[++tot] = dep[u];
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if(f[v] || v == rt) continue;
dep[v] = dep[u] + e[i].dis;
getdep(v, u);
}
}
int calc(int u) {
tot = 0;
getdep(u, 0);
sort(d + 1, d + 1 + tot);
int l = 1, r = tot, rv = 0;
while(l < r) {
if(d[l] + d[r] <= k) rv += r - l, l++;
else r--;
}
return rv;
}
void work(int u) {
dep[u] = 0;
f[u] = 1;
ans += calc(u);
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if(!f[v]) {
dep[v] = e[i].dis;
ans -= calc(v);
masize = siz[v];
rot = 0;
getroot(v, 0);
work(rot);
}
}
}
int main() {
while(1) {
n = init(); k = init();
if(!n || !k) break;
memset(head, 0, sizeof(head));
memset(f, 0, sizeof(f));
nume = 0; tot = 0; masize = 0, ans = 0;
for(int i = 1; i < n; i++) {
int u = init(), v = init(), dis = init();
adde(u, v, dis); adde(v, u, dis);
}
gra[0] = 0x3f3f3f3f;
rot = 0;
getroot(1, 0);
work(rot);
cout << ans << endl;
}
return 0;
}