洛谷 [P3629] 巡逻
树的直径
树的直径有两种求法
1.两遍 dfs 法, 便于输出具体方案,但是无法处理负权边
2.DP 法,代码量少,可以处理负权边
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdlib>
using namespace std;
const int MAXN = 200005;
int n, k, head[MAXN], nume, fa[MAXN], ans, ma, t, d[MAXN], s;
bool f[MAXN];
struct edge {
int to, nxt, dis;
}e[MAXN<<1];
void adde(int from, int to) {
e[++nume].to = to;
e[nume].dis = 1;
e[nume].nxt = head[from];
head[from] = nume;
}
void dfs1(int u, int dep) {
if(f[u]) return ;
f[u] = 1;
if(dep > ma && u != 1) {
ma = dep;
k = u;
}
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
dfs1(v, dep + e[i].dis);
}
}
void del(int u) {
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if(v == fa[u]) {
e[i].dis = e[((i - 1) ^ 1) + 1].dis = -1;
del(v);
}
}
}
void dfs2(int u, int dep) {
f[u] = 1;
if(dep > ma && u != t) {
ma = dep; k = u;
}
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if(!f[v]) {
fa[v] = u;
dfs2(v, dep + e[i].dis);
}
}
}
void dp(int u) {
f[u] = 1;
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if(!f[v]) {
dp(v);
ma = max(ma, d[u] + d[v] + e[i].dis);
d[u] = max(d[u], d[v] + e[i].dis);
}
}
}
int main() {
cin >> n >> s;
for(int i = 1; i < n; i++) {
int u, v;
scanf("%d %d", &u, &v);
adde(u, v);
adde(v, u);
}
dfs1(1, 0);
ma = 0;t = k; k = 0;
memset(f, 0, sizeof(f));
dfs2(t, 0);
ans += 2 * (n - 1) ;
ans -= ma - 1;
if(s == 2) {
del(k);
memset(f, 0, sizeof(f));
ma = 0;
dp(1);
ans -= ma - 1;
}
cout << ans << endl;
return 0;
}