洛谷 [P1040]加分二叉树

本题虽然是在树上的问题,但仍是区间DP的基本思路,因为给定区间是树的中序遍历,所以我们枚举左右端点,dp[i][j]表示从i到j号区间所表示的子树的最大分数,在转移的时候枚举根节点k,
有转移方程

if(dp[j][k-1]*dp[k+1][i]+num[k]>dp[j][i]){
	dp[j][i]=dp[j][k-1]*dp[k+1][i]+num[k];
	rt[j][i]=k;
}

题目还要求输出先序遍历,只需在转移的时候更新root数组,rt[i][j]表示从i到j的区间所表示的子树的分数最大时的根节点。dfs输出即可。
由于题目问题,本题未AC,但思想仍可借鉴。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <cmath>
using namespace std;
int init(){
	int rv=0,fh=1;
	char c=getchar();
	while(c<'0'||c>'9'){
		if(c=='-') fh=-1;
		c=getchar();
	}
	while(c>='0'&&c<='9'){
		rv=(rv<<1)+(rv<<3)+c-'0';
		c=getchar();
	}
	return fh*rv;
}
long long n,dp[50][50],rt[50][50],num[50];
void dfs(int l,int r){
	if(l>r) return;
	if(l==r){
		printf("%d ",rt[l][r]);
		return;
	}
	printf("%d ",rt[l][r]);
	dfs(l,rt[l][r]-1);
	dfs(rt[l][r]+1,r);
}
int main(){
	freopen("in.txt","r",stdin);
	n=init();
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			dp[i][j]=1;
		}
	}
	for(int i=1;i<=n;i++){
		num[i]=init();
		dp[i][i]=num[i];rt[i][i]=i;
	}
	for(int t=1;t<=n;t++){
		for(int j=1;j+t<=n;j++){
			int i=j+t;
			for(int k=j;k<=i;k++){
				if(dp[j][k-1]*dp[k+1][i]+num[k]>dp[j][i]){
					dp[j][i]=dp[j][k-1]*dp[k+1][i]+num[k];
					rt[j][i]=k;
				}
			}
		}
	}
	
	cout<<dp[1][n]<<endl;
	dfs(1,n);
	fclose(stdin);
	return 0;
}

posted @ 2017-11-27 21:30  Mr_Wolfram  阅读(192)  评论(0编辑  收藏  举报