洛谷 [P1198] 最大数
首先这是一道线段树裸题,但是线段树长度不确定,那么我们可以在建树的时候,将每一个节点初始化为-INF,每次往队尾加一个元素即一次单节点更新,注意本题的数据范围,其实并不用开 long long,具体请看注释。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
using namespace std;
const int MAXN=200005;
int read(){
int rv=0,fh=1;
char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') fh=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
rv=(rv<<1)+(rv<<3)+c-'0';
c=getchar();
}
return rv*fh;
}
int MOD,m,t,ma[MAXN<<2],n;
void PushUp(int rt){
ma[rt]=max(ma[rt<<1],ma[rt<<1|1]);
}
void build(int l,int r,int rt){
if(l==r){
ma[rt]=-0x7fffffff;
return;
}
int mid=l+((r-l)>>1);
build(lson);
build(rson);
PushUp(rt);
}
void Update(int add,int loc,int l,int r,int rt){
if(r==loc&&l==loc){
ma[rt]=add;
return;
}
int mid=l+((r-l)>>1); //这样取平均数可以防溢出
if(loc<=mid) Update(add,loc,lson);
else Update(add,loc,rson);
PushUp(rt);
}
int query(int L,int R,int l,int r,int rt){
if(L<=l&&r<=R){
return ma[rt];
}
int mid=l+((r-l)>>1);
int q=-0x7fffffff;
if(L<=mid){
q=max(q,query(L,R,lson));
}
if(mid<R) q=max(q,query(L,R,rson));
return q;
}
int main(){
freopen("in.txt","r",stdin);
m=read();MOD=read();
build(1,m,1);
for(int i=1;i<=m;i++){
char c;
scanf(" %c ",&c);
int k=read();
if(c=='A'){
n++;
k=((long long)k+t)%MOD;//注意防止溢出
Update(k,n,1,m,1);
}else {
t=query(n-k+1,n,1,m,1);
printf("%d\n",t);
}
}
fclose(stdin);
return 0;
}
等等。。本题只要求在队尾加入元素,而且要求的是队尾几个元素的最小值,那么这道题就可以用单调栈+二分来做
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN=200005;
int read(){
int rv=0,fh=1;
char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') fh=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
rv=(rv<<1)+(rv<<3)+c-'0';
c=getchar();
}
return rv*fh;
}
int m,MOD,t,stack[MAXN],head,num[MAXN],cnt;
int main(){
freopen("in.txt","r",stdin);
m=read();MOD=read();
for(int i=1;i<=m;i++){
char c;
scanf(" %c ",&c);
int k=read();
if(c=='A'){
k=((long long)k+t)%MOD;
cnt++;
while(stack[head]<=k&&head) head--;
head++;
stack[head]=k;
num[head]=cnt;
}else {
int l=1,r=head,mid;
k=cnt-k+1;
while(l<=r){
mid=(l+r)>>1;
if(num[mid]<k){
l=mid+1;
}else {
r=mid-1;
}
}
t=stack[l];
printf("%d\n",t);
}
}
fclose(stdin);
return 0;
}