python并发编程之多进程

一、 multiprocessing模块介绍

  multiprocessing模块用来开启子进程,并在子进程中执行我们定制的任务(比如函数),该模块与多线程模块threading的编程接口类似。

  multiprocessing模块的功能众多:支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。

  与线程不同,进程没有任何共享状态,进程修改的数据,改动仅限于该进程内

二 、Process类的介绍

  创建进程的类:

Process([group [, target [, name [, args [, kwargs]]]]]),由该类实例化得到的对象,表示一个子进程中的任务(尚未启动)

强调:
1. 需要使用关键字的方式来指定参数
2. args指定的为传给target函数的位置参数,是一个元组形式,必须有逗号

   参数介绍:

group参数未使用,值始终为None

target表示调用对象,即子进程要执行的任务

args表示调用对象的位置参数元组,args=(1,2,'egon',)

kwargs表示调用对象的字典,kwargs={'name':'egon','age':18}

name为子进程的名称

  方法介绍:

p.start():启动进程,并调用该子进程中的p.run() 
p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法  

p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁
p.is_alive():如果p仍然运行,返回True

p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程

  属性介绍:

p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置

p.name:进程的名称

p.pid:进程的pid

p.exitcode:进程在运行时为None、如果为–N,表示被信号N结束(了解即可)

p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可)

  三 、Process类的使用

  

#开进程的方法一:
import time
import random
from multiprocessing import Process
def piao(name):
    print('%s piaoing' %name)
    time.sleep(random.randrange(1,5))
    print('%s piao end' %name)



p1=Process(target=piao,args=('egon',)) #必须加,号
p2=Process(target=piao,args=('alex',))
p3=Process(target=piao,args=('wupeqi',))
p4=Process(target=piao,args=('yuanhao',))

p1.start()
p2.start()
p3.start()
p4.start()
print('主线程')

方法一

  四 、守护进程

  主进程创建守护进程

  其一:守护进程会在主进程代码执行结束后就终止

  其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children

  注意:进程之间是互相独立的,主进程代码运行结束,守护进程随即终止

五 进程同步(锁)

  进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的,

  竞争带来的结果就是错乱,如何控制,就是加锁处理

  多个进程共享同一打印终端

#并发运行,效率高,但竞争同一打印终端,带来了打印错乱
from multiprocessing import Process
import os,time
def work():
    print('%s is running' %os.getpid())
    time.sleep(2)
    print('%s is done' %os.getpid())

if __name__ == '__main__':
    for i in range(3):
        p=Process(target=work)
        p.start()

并发运行,效率高,但竞争同一打印终端,带来了打印错乱

  

#由并发变成了串行,牺牲了运行效率,但避免了竞争
from multiprocessing import Process,Lock
import os,time
def work(lock):
    lock.acquire()
    print('%s is running' %os.getpid())
    time.sleep(2)
    print('%s is done' %os.getpid())
    lock.release()
if __name__ == '__main__':
    lock=Lock()
    for i in range(3):
        p=Process(target=work,args=(lock,))
        p.start()

加锁:由并发变成了串行,牺牲了运行效率,但避免了竞争

  

总结:

加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全。
虽然可以用文件共享数据实现进程间通信,但问题是:
1.效率低
2.需要自己加锁处理

六 、队列

  进程彼此之间互相隔离,要实现进程间通信(IPC),multiprocessing模块支持两种形式:队列和管道,这两种方式都是使用消息传递的

 Queue([maxsize]):创建共享的进程队列,Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。 
 参数介绍:
 maxsize是队列中允许最大项数,省略则无大小限制。

  主要方法:

  q.put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。
q.get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常.

q.get_nowait():同q.get(False)
q.put_nowait():同q.put(False)

q.empty():调用此方法时q为空则返回True,该结果不可靠,比如在返回True的过程中,如果队列中又加入了项目。
q.full():调用此方法时q已满则返回True,该结果不可靠,比如在返回True的过程中,如果队列中的项目被取走。
q.qsize():返回队列中目前项目的正确数量,结果也不可靠,理由同q.empty()和q.full()一

 

posted @ 2017-09-01 11:24  咬耗子的猫  阅读(211)  评论(0编辑  收藏  举报