G
N
I
D
A
O
L

【机器学习】单变量线性回归

源代码文件请点击此处

线性回归模型(linear regression model)

  • 线性回归模型:

\[f_{w,b}(x) = wx + b \]

其中,\(w\) 为权重(weight),\(b\) 为偏置(bias)

  • 预测值(通常加一个帽子符号):

\[\hat{y}^{(i)} = f_{w,b}(x^{(i)}) = wx^{(i)} + b \]

损失/代价函数(cost function)——均方误差(mean squared error)

  • 一个训练样本:\((x^{(i)}, y^{(i)})\)
  • 训练样本总数 = \(m\)
  • 损失/代价函数是一个二次函数,在图像上是一个开口向上的抛物线的形状。

\[\begin{aligned} J(w, b) &= \frac{1}{2m} \sum^{m}_{i=1} [f_{w,b}(x^{(i)}) - y^{(i)}]^2 \\ &= \frac{1}{2m} \sum^{m}_{i=1} [wx^{(i)} + b - y^{(i)}]^2 \end{aligned} \]

  • 为什么需要乘以 1/2?因为对平方项求偏导后会出现系数 2,是为了约去这个系数。

梯度下降算法(gradient descent algorithm)

  • \(\alpha\):学习率(learning rate),用于控制梯度下降时的步长,以抵达损失函数的最小值处。若 \(\alpha\) 太小,梯度下降太慢;若 \(\alpha\) 太大,下降过程可能无法收敛。
  • 梯度下降算法:

\[\begin{aligned} repeat \{ \\ & tmp\_w = w - \alpha \frac{\partial J(w, b)}{w} \\ & tmp\_b = b - \alpha \frac{\partial J(w, b)}{b} \\ & w = tmp\_w \\ & b = tmp\_b \\ \} until \ & converge \end{aligned} \]

其中,偏导数为

\[\begin{aligned} & \frac{\partial J(w, b)}{w} = \frac{1}{m} \sum^{m}_{i=1} [f_{w,b}(x^{(i)}) - y^{(i)}] x^{(i)} \\ & \frac{\partial J(w, b)}{b} = \frac{1}{m} \sum^{m}_{i=1} [f_{w,b}(x^{(i)}) - y^{(i)}] \end{aligned} \]

参数(parameter)和超参数(hyperparameter)

  • 超参数(hyperparameter):训练之前人为设置的任何数量都是超参数,例如学习率 \(\alpha\)
  • 参数(parameter):模型在训练过程中创建或修改的任何数量都是参数,例如 \(w, b\)

代码实现样例

import numpy as np
import matplotlib.pyplot as plt

# 计算误差均方函数 J(w,b)
def cost_function(x, y, w, b):
    m = x.shape[0] # 训练集的数据样本数
    cost_sum = 0.0
    for i in range(m):
        f_wb = w * x[i] + b
        cost = (f_wb - y[i]) ** 2
        cost_sum += cost
    return cost_sum / (2 * m)

# 计算梯度值 dJ/dw, dJ/db
def compute_gradient(x, y, w, b):
    m = x.shape[0] # 训练集的数据样本数
    d_w = 0.0
    d_b = 0.0
    for i in range(m):
        f_wb = w * x[i] + b
        d_wi = (f_wb - y[i]) * x[i]
        d_bi = (f_wb - y[i])
        d_w += d_wi
        d_b += d_bi
    dj_dw = d_w / m
    dj_db = d_b / m
    return dj_dw, dj_db

# 梯度下降算法
def linear_regression(x, y, w, b, learning_rate=0.01, epochs=1000):
    J_history = [] # 记录每次迭代产生的误差值
    for epoch in range(epochs):
        dj_dw, dj_db = compute_gradient(x, y, w, b)
        # w 和 b 需同步更新
        w = w - learning_rate * dj_dw
        b = b - learning_rate * dj_db
        J_history.append(cost_function(x, y, w, b)) # 记录每次迭代产生的误差值
    return w, b, J_history

# 绘制线性方程的图像
def draw_line(w, b, xmin, xmax, title):
    x = np.linspace(xmin, xmax)
    y = w * x + b
    # plt.axis([0, 10, 0, 50]) # xmin, xmax, ymin, ymax
    plt.xlabel("X-axis", size=15)
    plt.ylabel("Y-axis", size=15)
    plt.title(title, size=20)
    plt.plot(x, y)

# 绘制散点图
def draw_scatter(x, y, title):
    plt.xlabel("X-axis", size=15)
    plt.ylabel("Y-axis", size=15)
    plt.title(title, size=20)
    plt.scatter(x, y)

# 从这里开始执行
if __name__ == '__main__':
    # 训练集样本
    x_train = np.array([1, 2, 3, 5, 6, 7])
    y_train = np.array([15.5, 19.7, 24.4, 35.6, 40.7, 44.8])
    w = 0.0 # 权重
    b = 0.0 # 偏置
    epochs = 10000 # 迭代次数
    learning_rate = 0.01 # 学习率
    J_history = [] # # 记录每次迭代产生的误差值

    w, b, J_history = linear_regression(x_train, y_train, w, b, learning_rate, epochs)
    print(f"result: w = {w:0.4f}, b = {b:0.4f}") # 打印结果

    # 绘制迭代计算得到的线性回归方程
    plt.figure(1)
    draw_line(w, b, 0, 10, "Linear Regression")
    plt.scatter(x_train, y_train) # 将训练数据集也表示在图中
    plt.show()

    # 绘制误差值的散点图
    plt.figure(2)
    x_axis = list(range(0, 10000))
    draw_scatter(x_axis, J_history, "Cost Function in Every Epoch")
    plt.show()

运行结果

image

image

posted @ 2024-01-08 12:04  漫舞八月(Mount256)  阅读(20)  评论(0编辑  收藏  举报