二项式反演

也许更好的阅读体验

表达

若有\(f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\)
则有\(g(n)=\sum_{i=0}^n(-1)^{n-i}\binom{n}{i}f(i)\)


证明

\(\begin{aligned}g(n)&=\sum_{i=0}^n(-1)^{n-i}\binom{n}{i}f(i)\\ &=\sum_{i=0}^n(-1)^{n-i}\binom{n}{i}\sum_{j=0}^i\binom{i}{j}g(j)\\ &=\sum_{i=0}^n\sum_{j=0}^i(-1)^{n-i}\binom{n}{i}\binom{i}{j}g(j)\\ &=\sum_{j=0}^n\sum_{i=j}^n(-1)^{n-i}\binom{n}{i}\binom{i}{j}g(j)\\ \end{aligned}\)
在组合数中,有这么一个式子
\(\begin{aligned}\binom{i}{j}\binom{j}{k} &= \frac{i!}{j!(i - j)!}\frac{j!}{k!(j - k)!} \\ &=\dfrac {i!}{k!\left( i-k\right) !}\dfrac {\left( i-k\right) !}{\left( i-j\right) !\left( j-k\right) !}\\ &=\dfrac {i!}{k!\left( i-k\right) !}\dfrac {\left( i-k\right) !}{\left( \left( i-k\right) -\left( j-k\right) \right) !\left( j-k\right) !}\\ &=\begin{pmatrix} i \\ k \end{pmatrix}\begin{pmatrix} i-k \\ j-k \end{pmatrix}\end{aligned}\)

\(\begin{aligned}\binom{i}{j}\binom{j}{k}=\begin{pmatrix} i \\ k \end{pmatrix}\begin{pmatrix} i-k \\ j-k \end{pmatrix}\end{aligned}\)
所以
\(\begin{aligned}原式&=\sum_{j=0}^n\sum_{i=j}^n(-1)^{n-i}\binom{n}{j}\binom{n-j}{i-j}g(j)\\ &=\sum_{j=0}^n\sum ^{n-j}_{i=0}\left( -1\right) ^{n-i-j}\begin{pmatrix} n \\ j \end{pmatrix}\begin{pmatrix} n-j \\ i \end{pmatrix}g(j)\\ &=\sum_{j=0}^n\left(1-1\right)^{n-j}\begin{pmatrix} n \\ j \end{pmatrix}g\left(j\right) \end{aligned}\)
此时要求\(n != j\),此时\(原式=0\)
\(n=j\)时,\(原式=g(n)\)

到此,原式得证

如有哪里讲得不是很明白或是有错误,欢迎指正
如您喜欢的话不妨点个赞收藏一下吧

posted @ 2019-08-09 14:54  Morning_Glory  阅读(225)  评论(0编辑  收藏  举报
//