算法基础课
第一章 基础算法
快速排序
快速排序
分析:
代码:
#include <iostream>
#include <algorithm>
#include <cstring>
#include <map>
#include <vector>
#include <queue>
#include <stack>
using namespace std;
#define pb push_back
#define pu push
#define fi first
#define se second
typedef pair<int,int> PII;
const int N = 2e5 + 10;
int w[N];
void quick_sort(int l, int r) {
if(l >= r) return;
int i = l - 1, j = r + 1;
int p = w[l + r >> 1];
while(i < j) {
do i++; while(w[i] < p);
do j--; while(w[j] > p);
if(i < j) swap(w[i], w[j]);
}
quick_sort(l, j), quick_sort(j + 1, r);
}
int main() {
int n; cin >> n;
for(int i = 0; i < n; i++) cin >> w[i];
quick_sort(0, n - 1);
for(int i = 0; i < n; i++) cout << w[i] << ' ';
cout << endl;
return 0;
}
第k个数
分析:
代码:
#include <iostream>
#include <algorithm>
#include <cstring>
#include <map>
#include <vector>
#include <queue>
#include <stack>
using namespace std;
#define pb push_back
#define pu push
#define fi first
#define se second
typedef pair<int,int> PII;
const int N = 2e5 + 10;
int w[N];
void quick_sort(int l, int r) {
if(l >= r) return;
int i = l - 1, j = r + 1;
int p = w[l + r >> 1];
while(i < j) {
do i++; while(w[i] < p);
do j--; while(w[j] > p);
if(i < j) swap(w[i], w[j]);
}
quick_sort(l, j), quick_sort(j + 1, r);
}
int main() {
int n, k; cin >> n >> k;
for(int i = 0; i < n; i++) cin >> w[i];
quick_sort(0, n - 1);
cout << w[k - 1] << endl;
return 0;
}
第二章 数据结构
第三章 搜索与图论
DFS
BFS
树与图的深度优先遍历
树与图的广度优先遍历
拓扑排序
Dijstra
Dijkstra求最短路(朴素版)
代码:
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 510;
int g[N][N];
int dist[N];
bool st[N];
int n, m;
int dijstra() {
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for(int i = 0; i < n; i++) {
int t = -1;
for(int j = 1; j <= n; j++) {
if(!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
}
st[t] = true;
for(int j = 1; j <= n; j++)
dist[j] = min(dist[j], dist[t] + g[t][j]);
}
if(dist[n] == 0x3f3f3f3f) return -1;
else return dist[n];
}
int main() {
cin >> n >> m;
memset(g, 0x3f, sizeof g);
for(int i = 0; i < m; i++) {
int a, b, c; cin >> a >> b >> c;
g[a][b] = min(g[a][b], c);
}
cout << dijstra() << endl;
return 0;
}
Dijkstra求最短路(堆优化版)
代码:
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
using namespace std;
typedef pair<int,int> PII;
const int N = 2e5 + 10;
int h[N], e[N], ne[N], w[N], idx;
int dist[N];
bool st[N];
int n, m;
void add(int a, int b, int c) {
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
int dijstra() {
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0, 1});
while(heap.size()) {
auto t = heap.top();
heap.pop();
int b = t.first, a = t.second;
if(st[a]) continue;
st[a] = true;
for(int i = h[a]; ~i; i = ne[i]) {
int j = e[i];
if(dist[j] > b + w[i]) {
dist[j] = b + w[i];
heap.push({dist[j], j});
}
}
}
if(dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
int main() {
cin >> n >> m;
memset(h, -1, sizeof h);
for(int i = 0; i < m; i++) {
int a, b, c; cin >> a >> b >> c;
add(a, b, c);
}
cout << dijstra() << endl;
return 0;
}
bellman-ford
有边数限制的最短路
代码:
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 510, M = 10010;
struct node {
int a, b, w;
}edge[M];
int dist[N], backup[N];
int n, m, k;
int bellman_ford() {
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for(int i = 0; i < k; i++) {
memcpy(backup, dist, sizeof backup);
for(int j = 0; j < m; j++) {
dist[edge[j].b] = min(dist[edge[j].b], backup[edge[j].a] + edge[j].w);
}
}
if(dist[n] > 0x3f3f3f3f / 2) return 0x3f3f3f3f;
else return dist[n];
}
int main() {
cin >> n >> m >> k;
for(int i = 0; i < m; i++) {
int a, b, w; cin >> a >> b >> w;
edge[i] = {a, b, w};
}
int t = bellman_ford();
if(t == 0x3f3f3f3f) cout << "impossible" << endl;
else cout << t << endl;
return 0;
}
spfa
spfa求最短路
代码:
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
using namespace std;
const int N = 1e5 + 10;
int h[N], e[N], ne[N], w[N], idx;
int n, m;
int dist[N];
bool st[N];
void add(int a, int b, int c) {
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
int spfa() {
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
queue<int>q;
q.push(1);
st[1] = true;
while(q.size()) {
int t = q.front();
q.pop();
st[t] = false;
for(int i = h[t]; i != -1; i = ne[i]) {
int j = e[i];
if(dist[j] > dist[t] + w[i]) {
dist[j] = dist[t] + w[i];
if(!st[j]) {
st[j] = 1;
q.push(j);
}
}
}
}
if(dist[n] > 0x3f3f3f3f / 2) return 0x3f3f3f3f;
return dist[n];
}
int main() {
cin >> n >> m;
memset(h, -1, sizeof h);
for(int i = 0; i < m; i++) {
int a, b, c; cin >> a >> b >> c;
add(a, b, c);
}
int t = spfa();
if(t == 0x3f3f3f3f) cout << "impossible" << endl;
else cout << t << endl;
return 0;
}
spfa判断负环
代码:
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstring>
using namespace std;
const int N = 10010;
int h[N], e[N], ne[N], w[N], idx;
bool st[N];
int cnt[N];
int dist[N];
int n, m;
void add(int a, int b, int c) {
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
bool spfa() {
queue<int>q;
for(int i = 1; i <= n; i++) {
st[i] = 1;
q.push(i);
}
while(q.size()) {
int t = q.front();
st[t] = false;
q.pop();
for(int i = h[t]; i != -1; i = ne[i]) {
int j = e[i];
if(dist[j] > dist[t] + w[i]) {
dist[j] = dist[t] + w[i];
cnt[j] = cnt[t] + 1;
if(cnt[j] >= n) return true;
if(!st[j]) {
st[j] = 1;
q.push(j);
}
}
}
}
return false;
}
int main() {
cin >> n >> m;
memset(h, -1 ,sizeof h);
for(int i = 0; i < m; i++) {
int a, b, c; cin >> a >> b >> c;
add(a, b, c);
}
if(spfa()) cout << "Yes" << endl;
else cout << "No" << endl;
return 0;
}
Floyd
Floyd求最短路
代码:
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 210;
int g[N][N];
int main() {
int n, m, Q;
cin >> n >> m >> Q;
memset(g, 0x3f, sizeof g);
for(int i = 1; i <= n; i++) g[i][i] = 0;
while(m--) {
int a, b, c;
cin >> a >> b >> c;
g[a][b] = min(g[a][b], c);
}
for(int k = 1; k <= n; k++)
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
g[i][j] = min(g[i][j], g[i][k] + g[k][j]);
while(Q--) {
int x, y; cin >> x >> y;
if(g[x][y] > 0x3f3f3f3f / 2) cout << "impossible" << endl;
else cout << g[x][y] << endl;
}
return 0;
}
Prim
Prim算法求最小生成树
代码:
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 510;
int g[N][N];
int dist[N];
bool st[N];
int n, m;
int prim() {
memset(dist, 0x3f, sizeof dist);
int ans = 0;
for(int i = 0; i < n; i++) {
int t = -1;
for(int j = 1; j <= n; j++) {
if(!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
}
st[t] = true;
if(i && dist[t] == 0x3f3f3f3f) return 0x3f3f3f3f;
if(i) ans += dist[t];
for(int j = 1; j <= n; j++)
dist[j] = min(dist[j], g[t][j]);
}
return ans;
}
int main() {
cin >> n >> m;
memset(g, 0x3f, sizeof g);
for(int i = 0; i < m; i++) {
int a, b, c; cin >> a >> b >> c;
g[a][b] = g[b][a] = min(g[a][b], c);
}
int t = prim();
if(t == 0x3f3f3f3f) puts("impossible");
else cout << t << endl;
return 0;
}
Kruskal
Kruskal算法求最小生成树
代码:
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 2e5 + 10;
struct node {
int a, b, w;
}edge[N];
int p[N];
bool cmp(node a, node b) {
return a.w < b.w;
}
int find(int x) {
if(p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main() {
int n, m; cin >> n >> m;
for(int i = 1; i <= n; i++) p[i] = i;
for(int i = 0; i < m; i++) {
int a, b, c;
cin >> a >> b >> c;
edge[i] = {a, b, c};
}
int ans = 0, cnt = 0;
sort(edge, edge + m, cmp);
for(int i = 0; i < m; i++) {
int a = edge[i].a, b = edge[i].b, w = edge[i].w;
a = find(a), b = find(b);
if(a != b) {
ans += w;
cnt++;
p[a] = b;
}
}
if(cnt < n - 1) cout << "impossible" << endl;
else cout << ans << endl;
return 0;
}
染色法判定二分图
染色法判定二分图
DFS代码:
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1e5 + 10, M = 2e5 + 10;
int h[M], e[M], ne[M], idx;
int color[N];
void add(int a, int b) {
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
bool dfs(int u, int c) {
color[u] = c;
for(int i = h[u]; i != -1; i = ne[i]) {
int j = e[i];
if(!color[j]) {
if(!dfs(j, 3 - c)) return false;
}else if(color[j] == c) return false;
}
return true;
}
int main() {
int n, m; cin >> n >> m;
memset(h, -1, sizeof h);
for(int i = 1; i <= m; i++) {
int a, b; cin >> a >> b;
add(a, b);
add(b, a);
}
bool flag = true;
for(int i = 1; i <= n; i++) {
if(!color[i]) {
if(!dfs(i, 1)) {
flag = false;
break;
}
}
}
if(flag) puts("Yes");
else puts("No");
return 0;
}
匈牙利算法
二分图的最大匹配
代码:
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 510, M = 1e5 + 10;
int h[M], e[M], ne[M], idx;
int a[N], b[N], match[N];
bool st[N];
int n1, n2, m;
void add(int x, int y) {
e[idx] = y, ne[idx] = h[x], h[x] = idx++;
}
bool find(int u) {
for(int i = h[u]; i != -1; i = ne[i]) {
int j = e[i];
if(!st[j]) {
st[j] = true;
if(match[j] == 0 || find(match[j])) {
match[j] = u;
return true;
}
}
}
return false;;
}
int main() {
cin >> n1 >> n2 >> m;
memset(h, -1, sizeof h);
while(m--) {
int x, y; cin >> x >> y;
add(x, y);
}
int cnt = 0;
for(int i = 1; i <= n1; i++) {
memset(st, false, sizeof st);
if(find(i)) cnt++;
}
cout << cnt << endl;
return 0;
}