Redis缓存雪崩问题

一、什么是缓存雪崩   

缓存雪崩就是指缓存由于某些原因(比如 宕机、cache服务挂了或者不响应)整体crash掉了,导致大量请求到达后端数据库,从而导致数据库崩溃,整个系统崩溃,发生灾难。

下面的就是一个雪崩的简单过程:

                1、redis集群彻底崩溃

                2、缓存服务大量对redis的请求hang住,占用资源

                3、缓存服务大量的请求打到源头服务去查询mysql,直接打死mysql

                4、源头服务因为mysql被打死也崩溃,对源服务的请求也hang住,占用资源

                5、缓存服务大量的资源全部耗费在访问redis和源服务无果,最后自己被拖死,无法提供服务

                6、nginx无法访问缓存服务,redis和源服务,只能基于本地缓存提供服务,但是缓存过期后,没有数据提供

                7、网站崩溃

雪崩问题在国外叫做:stampeding herd(奔逃的野牛),指的的cache crash后,流量会像奔逃的野牛一样,打向后端。

导致这种现象可能的原因:

1、例如 “缓存并发”,“缓存穿透”,“缓存颠簸” 等问题,这些问题也可能会被恶意攻击者所利用。  

2、例如 某个时间点内,系统预加载的缓存周期性集中失效了。解决方法:可以通过设置不同的过期时间,来错开缓存过期,从而避免缓存集中失效。

缓存击穿问题

缓存击穿表示恶意用户模拟请求很多缓存中不存在的数据,由于缓存中都没有,导致这些请求短时间内直接落在了数据库上,导致数据库异常。这个我们在实际项目就遇到了,有些抢购活动、秒杀活动的接口API被大量的恶意用户刷,导致短时间内数据库宕机了,好在数据库是多主多从的,hold住了。

解决方案的话:

1、使用互斥锁排队

业界比价普遍的一种做法,即根据key获取value值为空时,锁上,从数据库中load数据后再释放锁。若其它线程获取锁失败,则等待一段时间后重试。这里要注意,分布式环境中要使用分布式锁,单机的话用普通的锁(synchronized、Lock)就够了。

这样做思路比较清晰,也从一定程度上减轻数据库压力,但是锁机制使得逻辑的复杂度增加,吞吐量也降低了,有点治标不治本。

2、布隆过滤器(推荐)

bloomfilter就类似于一个hash set,用于快速判某个元素是否存在于集合中,其典型的应用场景就是快速判断一个key是否存在于某容器,不存在就直接返回,从而避免了对底层存储系统的查询压力。布隆过滤器的关键就在于hash算法和容器大小。

缓存雪崩问题

缓存在同一时间内大量键过期(失效),接着来的一大波请求瞬间都落在了数据库中导致连接异常。

解决方案:

1、也是像解决缓存穿透一样加锁排队,实现同上;

2、建立备份缓存,缓存A和缓存B,A设置超时时间,B不设值超时时间,先从A读缓存,A没有读B,并且更新A缓存和B缓存;

缓存并发问题

这里的并发指的是多个redis的client同时set key引起的并发问题。比较有效的解决方案就是把redis.set操作放在队列中使其串行化,必须的一个一个执行,具体的代码就不上了,当然加锁也是可以的,至于为什么不用redis中的事务,留给各位看官自己思考探究。

posted @ 2018-12-03 09:40  MoMing·  阅读(836)  评论(0编辑  收藏  举报