「模拟赛20190329」作业 泰勒展开
题目描述
小W的数学老师总是喜欢布置计算题作为业,小W却只对证明题感兴趣。
这一次,小W的数学老师布置了一道计算题:
已知递推公式
\(f_n=1-nf_{n-1}(n>0)\)
\(f_0=1-e\)
对于老师给定的\(n\),小W需要计算\(f_n\)。小W认为这个作业非常简单而且无聊,所以他找到了你,希望你能帮助他完成这道作业题。
输入
第一行一个整数\(n\),表示给定的\(n\)。
输出
一行一个浮点数表示答案,保留\(4\)位小数。
样例
样例输入
#样例1
0
#样例2
2
样例输出
#样例1
0.6321
#样例2
0.2642
数据范围
对于\(10\%\)的数据\(n<=10\)
对于\(100\%\)的数据满足\(n<=10000\)
题解
真·数学题。
解法\(1\):
前\(10\)个暴算,\(11-50\)二分答案用\(f_{n-1}=\frac{1-f_n}{n}\)验证。更大的算近似值\(f_n\approx\frac{1}{n+2}\)。
解法\(2\):
\(Orz\),跪膜\(Freopen\)大爷。
将\(\frac{1}{e}\)泰勒展开变成\(\sum(-1)^n\cdot \frac{1}{n!}\)
将\(f_n\)变成非递推形式,这一步很好想:
将\(\frac{1}{e}\)带入进去,注意\(\frac{1}{e}\)展开后是有无穷项的。
因为\(n-i\)和\(n+i\)的奇偶性是相同的,我们可以前后抵消一大坨
发现\(\frac{n!}{(n+i)!}\)必定小于\(1\),而且是在做除法,精度不会流失,那么我们就可以枚举\(i\),直到某一项小于\(eps\)之后就停止,由于是以阶乘的速度减小,所以只需要枚举几项就可以了。
代码采取的是第二种方法。
\(Code:\)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define eps 1e-6
int n;
double ans, now;
int main()
{
scanf("%d", &n);
now = 1;
for (int i = 1; now >= eps; i++)
{
now = now / (n + i);
if (i & 1)
ans += now;
else
ans -= now;
}
printf("%.4f\n", ans);
}
作者:ModestStarlight
出处:http://www.cnblogs.com/ModestStarlight/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。