【数论】欧拉函数

欧拉函数的定义

$1\sim N$中与$N$互质的数的个数被称为欧拉函数,记作$\phi \left ( N \right )$

 在算数基本定理中,$N= p_1^{a_1}p_2^{a_2}...p_m^{a_m}$,则:

$\phi \left ( N \right ) = N\times \frac{p_1 - 1}{p_1} \times \frac {p_2-1}{p_2}\times ...\times \frac {p_m - 1}{p_m} $

 1 #include <iostream>
 2 using namespace std;
 3 
 4 int main()
 5 {
 6     int n;
 7     cin >> n;
 8     while(n--)
 9     {
10         int x,res = 0;
11         cin >> x;
12         res = x;
13         for(int i = 2;i <= x/i;++i)
14         {
15             if(x % i == 0)
16                res = res / i * (i - 1);
17             while(x % i == 0)
18                 x /= i;
19         }
20         if(x > 1)
21             res = res / x * (x - 1);//先除再乘,避免溢出
22         cout << res << endl;
23     }
24     return 0;
25 }

 

欧拉函数证明

$N = 1=>\phi \left(N\right) = 1;$

$如果N是质数,则\phi \left(N\right) = N - 1; $ 

$如果N是质数p的k次方,即N = p^{k},则\phi \left(N\right) = p^{k} - p^{k-1} = p^{k}-(1-\frac{1}{p^{k}}),因为只有当一个数不包含质数p时,才与N互质,而包含p的数有1\times p,2\times p,...,p^{k - 1}\times p,共p^{k - 1}个,减去即可,其实上面就是k=1的特殊情况;$

$如果N可以分解成两个质数的乘积,即N=p_1^{k_1}\times p_2^{k_2},则\phi \left(N\right) = \phi \left(p_1^{k_1}\right) \times \phi \left(p_2^{k_2}\right);$

$因此\phi \left (N\right) = \phi \left (p_1^{k_1}\right)\phi \left (p_2^{k_2}\right)...\phi \left (p_m^{k_m}\right) = p_1^{k_1}p_2^{k_2}...p_m^{k_m}(1-\frac{1}{p_1})(1-\frac{1}{p_2} )...(1-\frac{1}{p_m})=N(1-\frac{1}{p_1})(1-\frac{1}{p_2} )...(1-\frac{1}{p_m}).$

 

利用线性筛求欧拉函数

$当一个数i是质数的时候,\phi \left (i\right) = i - 1;$

$对于prime[j] \times i而prime[j]不是i的一个质因数, prime[j]可以看作是prime[j] \times i多出来的一个1次方的质数,而\phi \left (i\right)是已知的,因此\phi \left (prime[j]\times i\right) = prime[j] \times \phi \left (i\right) \times (1 - \frac{1}{prime[j]} ) =\phi \left (i\right) \times (prime[j] - 1);$

$对于prime[j]是i的一个质因数,则\phi \left(prime[j] \times i \right) =prime[j] \times \phi \left (i\right)$

 1 #include <iostream>
 2 using namespace std;
 3 const int N = 1000009;
 4 int prime[N],cnt,st[N];
 5 int phi[N];
 6 void euler(int n)
 7 {
 8     phi[1] = 1;
 9     for(int i = 2;i <= n;++i)
10     {
11         if(!st[i])
12         {
13             prime[cnt++] = i;
14             phi[i] = i - 1;
15         }
16         for(int j = 0;prime[j] <= n/i;++j)
17         {
18             st[prime[j] * i] = 1;
19             if(i % prime[j] == 0)
20             {
21                 phi[prime[j] * i] = prime[j] * phi[i];
22                 break;
23             }
24             phi[prime[j] * i] = phi[i] * (prime[j] - 1);
25         }
26     }
27     long long res = 0;
28     for(int i = 1;i <= n;++i)
29         res += phi[i];
30     cout << res << endl;
31 }
32 
33 int main()
34 {
35     int n;
36     cin >> n;
37     euler(n);
38     return 0;
39 }

 

posted @ 2021-10-30 20:55  Modest-Hamilton  阅读(117)  评论(0)    收藏  举报