【数论】欧拉函数
欧拉函数的定义:
$1\sim N$中与$N$互质的数的个数被称为欧拉函数,记作$\phi \left ( N \right )$
在算数基本定理中,$N= p_1^{a_1}p_2^{a_2}...p_m^{a_m}$,则:
$\phi \left ( N \right ) = N\times \frac{p_1 - 1}{p_1} \times \frac {p_2-1}{p_2}\times ...\times \frac {p_m - 1}{p_m} $
1 #include <iostream> 2 using namespace std; 3 4 int main() 5 { 6 int n; 7 cin >> n; 8 while(n--) 9 { 10 int x,res = 0; 11 cin >> x; 12 res = x; 13 for(int i = 2;i <= x/i;++i) 14 { 15 if(x % i == 0) 16 res = res / i * (i - 1); 17 while(x % i == 0) 18 x /= i; 19 } 20 if(x > 1) 21 res = res / x * (x - 1);//先除再乘,避免溢出 22 cout << res << endl; 23 } 24 return 0; 25 }
欧拉函数证明:
$N = 1=>\phi \left(N\right) = 1;$
$如果N是质数,则\phi \left(N\right) = N - 1; $
$如果N是质数p的k次方,即N = p^{k},则\phi \left(N\right) = p^{k} - p^{k-1} = p^{k}-(1-\frac{1}{p^{k}}),因为只有当一个数不包含质数p时,才与N互质,而包含p的数有1\times p,2\times p,...,p^{k - 1}\times p,共p^{k - 1}个,减去即可,其实上面就是k=1的特殊情况;$
$如果N可以分解成两个质数的乘积,即N=p_1^{k_1}\times p_2^{k_2},则\phi \left(N\right) = \phi \left(p_1^{k_1}\right) \times \phi \left(p_2^{k_2}\right);$
$因此\phi \left (N\right) = \phi \left (p_1^{k_1}\right)\phi \left (p_2^{k_2}\right)...\phi \left (p_m^{k_m}\right) = p_1^{k_1}p_2^{k_2}...p_m^{k_m}(1-\frac{1}{p_1})(1-\frac{1}{p_2} )...(1-\frac{1}{p_m})=N(1-\frac{1}{p_1})(1-\frac{1}{p_2} )...(1-\frac{1}{p_m}).$
利用线性筛求欧拉函数:
$当一个数i是质数的时候,\phi \left (i\right) = i - 1;$
$对于prime[j] \times i而prime[j]不是i的一个质因数, prime[j]可以看作是prime[j] \times i多出来的一个1次方的质数,而\phi \left (i\right)是已知的,因此\phi \left (prime[j]\times i\right) = prime[j] \times \phi \left (i\right) \times (1 - \frac{1}{prime[j]} ) =\phi \left (i\right) \times (prime[j] - 1);$
$对于prime[j]是i的一个质因数,则\phi \left(prime[j] \times i \right) =prime[j] \times \phi \left (i\right)$
1 #include <iostream> 2 using namespace std; 3 const int N = 1000009; 4 int prime[N],cnt,st[N]; 5 int phi[N]; 6 void euler(int n) 7 { 8 phi[1] = 1; 9 for(int i = 2;i <= n;++i) 10 { 11 if(!st[i]) 12 { 13 prime[cnt++] = i; 14 phi[i] = i - 1; 15 } 16 for(int j = 0;prime[j] <= n/i;++j) 17 { 18 st[prime[j] * i] = 1; 19 if(i % prime[j] == 0) 20 { 21 phi[prime[j] * i] = prime[j] * phi[i]; 22 break; 23 } 24 phi[prime[j] * i] = phi[i] * (prime[j] - 1); 25 } 26 } 27 long long res = 0; 28 for(int i = 1;i <= n;++i) 29 res += phi[i]; 30 cout << res << endl; 31 } 32 33 int main() 34 { 35 int n; 36 cin >> n; 37 euler(n); 38 return 0; 39 }