005-2-tensorboard-显示网络结构
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据 mnist = input_data.read_data_sets("MNIST_data",one_hot = True) #定义每个批次的大小 batch_size = 100 #计算一共有多少个批次 n_batch = mnist.train.num_examples//batch_size #命名空间 with tf.name_scope("input"): #定义2个placeholder x = tf.placeholder(tf.float32,[None,784],name="x_input") y = tf.placeholder(tf.float32,[None,10],name="y_input") #命名空间 with tf.name_scope("layer"): #创建一个简单的神经网络: with tf.name_scope('Weight'): W = tf.Variable(tf.zeros([784,10]),name='W') with tf.name_scope('Biases'): b = tf.Variable(tf.zeros([10]),name='b') with tf.name_scope('wx_plus_b'): wx_plus_b = tf.matmul(x,W)+b with tf.name_scope('softmax'): prediction = tf.nn.softmax(wx_plus_b) #二次代价函数: # loss = tf.reduce_mean(tf.square(y-prediction)) with tf.name_scope('loss'): #对数似然函数 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels= y, logits= prediction)) with tf.name_scope('train'): #梯度下降 train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量 init = tf.global_variables_initializer() with tf.name_scope('accuracy'): #求准确率 with tf.name_scope('correct_prediction'): #比较预测值最大标签位置与真实值最大标签位置是否相等 correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1)) with tf.name_scope('accuracy'): #求准去率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) with tf.Session() as sess: sess.run(init) writer = tf.summary.FileWriter("logs/",sess.graph) for epoch in range(1): for batch in range(n_batch): batch_xs,batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step,feed_dict = {x:batch_xs,y:batch_ys}) acc = sess.run(accuracy,feed_dict ={x:mnist.test.images, y:mnist.test.labels}) print("Iter"+str(epoch+1)+",Testing accuracy"+str(acc))
logs文件夹在anaconda prompt中输入命令:
tensorboard --logdir=logs路径
可以复制后面那个网址,也可以直接进入http://localhost:6006
可以得到整个网络结构