003-2-TensorFlow识别手写数字数据集MNIST(简单版本)

构建神经网络:

 

 

 

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#载入数据
mnist = input_data.read_data_sets("MNIST_data",one_hot = True)

#定义每个批次的大小
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples//batch_size

#定义2个placeholder
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])

#创建一个简单的神经网络:
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x,W)+b)



#二次代价函数:
loss = tf.reduce_mean(tf.square(y-prediction))
#梯度下降
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

#初始化变量
init = tf.global_variables_initializer()

#求准确率
#比较预测值最大标签位置与真实值最大标签位置是否相等
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
#求准去率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

with tf.Session() as sess:
    sess.run(init)
    for epoch in range(21):
        for batch in range(n_batch):
            batch_xs,batch_ys = mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict = {x:batch_xs,y:batch_ys})
        acc = sess.run(accuracy,feed_dict ={x:mnist.test.images,
                                            y:mnist.test.labels})
        print("Iter"+str(epoch+1)+",Testing accuracy"+str(acc))
        

  

Extracting MNIST_data\train-images-idx3-ubyte.gz
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
Iter1,Testing accuracy0.8296
Iter2,Testing accuracy0.8714
Iter3,Testing accuracy0.8817
Iter4,Testing accuracy0.8878
Iter5,Testing accuracy0.894
Iter6,Testing accuracy0.8967
Iter7,Testing accuracy0.9
Iter8,Testing accuracy0.9016
Iter9,Testing accuracy0.9038
Iter10,Testing accuracy0.9051
Iter11,Testing accuracy0.9063
Iter12,Testing accuracy0.9071
Iter13,Testing accuracy0.9091
Iter14,Testing accuracy0.9092
Iter15,Testing accuracy0.9098
Iter16,Testing accuracy0.9107
Iter17,Testing accuracy0.9117
Iter18,Testing accuracy0.9122
Iter19,Testing accuracy0.9126
Iter20,Testing accuracy0.9136
Iter21,Testing accuracy0.9139

 

posted on 2018-10-22 01:18  医疗兵皮特儿  阅读(291)  评论(0编辑  收藏  举报

导航