001-线性回归

如果有一组样本

要根据以后的x1,x2来预测以后未知的y

相当于拟合一个由θ1x1,θ2x2的平面hθ(x)来估计Y值

是偏置项

如果样本的特征无限增多,也就是x项有n多个

相当于

令x0=1

则有

 

矩阵比较高效,需要转换为矩阵,则

化为矩阵:

 

预测值和真实值之间必定存在误差

则设,误差为:

则每个样本的实际值为:

 

的概率密度服从正态分布,独立并且相同分布

均值为0,方差为

则此处的μ为0,

独立:每一组x的误差都与另外一组x的误差无关

相同分布:属于同一组数据或同一个作用域或x来自于同样一个地方的

因为服从高斯分布

则:

 

因为:

则:

 

 

似然函数:根据样本来估计参数值,也就是说,什么样的参数跟数据组合后恰好是真实值

目标是让越小越好,也就是说,让真实值和估计值越接近越好,或者是真实值与估计值相同的概率越高越好

累乘关系,为什么是累乘?

因为这里是要满足所有样本数据,相当于与的关系 ,

因为前面说,误差的均值是0,并且满足高斯分布,

那么高斯分布在均值处,概率最大,均为为0,误差为0

也就是说所有的误差分布的概率相乘之后,越大越好,对应的点就是误差为0

 

对数似然:为什么要取对数?因为加法比乘法简单

 

 

因为:

则可以化为:

化简:

前面说过,越大越好

可看做常数而且为正数

则让最小

就可以有最大

 

称为最小二乘法

真实值减去预测值的函数,

这里也说明,真实值减去预测值越小越好,得到的误差最小的概率也就越大,

这里一直是概率问题,不是实际误差值

这里的θ,x,y都是矩阵

展开后化简为:

这里矩阵X,y都是已知量

则对θ求偏导,导数为0时,有θ最小值

有θ最小值

 

X就是样本,Y也是样本

则可以求出θ

 

评估方法:

残差平方和越小越好,也就是真实值和预测值越接近,

越接近1,就说明这个模型是越好的

 

 

 

 

数学不要过一遍,用到哪里去看哪里就行,过一遍也不一定全都能记住。

 

唐宇迪机器学习视频笔记——线性回归算法原理推导

 

posted on 2018-09-13 21:54  医疗兵皮特儿  阅读(170)  评论(0编辑  收藏  举报

导航