Codeforces Round #595 (Div. 3)
Codeforces Round #595 (Div. 3)
A. Yet Another Dividing into Teams
-
思路:排序后找是否有两个相邻的数差值为1即可
-
AC代码
#include <algorithm>
#include <iomanip>
#include <iostream>
#include <map>
#include <math.h>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <stdio.h>
#include <string.h>
#include <string>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
ll mult_mod(ll x, ll y, ll mod){
return (x * y - (ll)(x / (long double)mod * y + 1e-3) * mod + mod) % mod;
}
ll pow_mod(ll a, ll b, ll p){
ll res = 1;
while (b){
if (b & 1)
res = mult_mod(res, a, p);
a = mult_mod(a, a, p);
b >>= 1;
}
return res % p;
}
ll gcd(ll a, ll b){
return b ? gcd(b, a % b) : a;
}
const int N = 110;
int q, n;
int a[N];
int main(){
#ifndef ONLINE_JUDGE
freopen("my_in.txt", "r", stdin);
#endif
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin >> q;
while (q -- ){
cin >> n;
for (int i = 1; i <= n; i ++ )
cin >> a[i];
sort(a + 1, a + n + 1);
bool flag = false;
for (int i = 1; i < n; i ++ ){
if (a[i] == a[i + 1] - 1){
flag = true;
break;
}
}
if (flag)
cout << 2 << "\n";
else
cout << 1 << "\n";
}
return 0;
}
B2. Books Exchange (hard version)
-
思路:dfs找环
-
AC代码
#include <algorithm>
#include <iomanip>
#include <iostream>
#include <map>
#include <math.h>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <stdio.h>
#include <string.h>
#include <string>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
ll mult_mod(ll x, ll y, ll mod){
return (x * y - (ll)(x / (long double)mod * y + 1e-3) * mod + mod) % mod;
}
ll pow_mod(ll a, ll b, ll p){
ll res = 1;
while (b){
if (b & 1)
res = mult_mod(res, a, p);
a = mult_mod(a, a, p);
b >>= 1;
}
return res % p;
}
ll gcd(ll a, ll b){
return b ? gcd(b, a % b) : a;
}
ll lcm(ll a, ll b){
return a / gcd(a, b) * b;
}
const int N = 2e5 + 10;
int q, n;
int p[N], ans[N];
int calc(int st, int now, int to, int step){
if (st == to)
return ans[now] = step;
return ans[now] = calc(st, to, p[to], step + 1);
}
int main(){
#ifndef ONLINE_JUDGE
freopen("my_in.txt", "r", stdin);
#endif
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin >> q;
while (q -- ){
memset(ans, 0, sizeof(ans));
cin >> n;
for (int i = 1; i <= n; i ++ )
cin >> p[i];
for (int i = 1; i <= n; i ++ )
if (!ans[i])
calc(i, i, p[i], 1);
for (int i = 1; i <= n; i ++ ){
if (i != n)
cout << ans[i] << " ";
else
cout << ans[i] << "\n";
}
}
return 0;
}
C2. Good Numbers (hard version)
-
思路:转换为三进制 每一位\(\geq2\)的当前位清零 下一位\(+1\) 并标记 然后把标记位之前的全部清零 再转换成十进制就行了
没写标记位直接将最高位之前清零导致wa6(逃 -
AC代码
#include <algorithm>
#include <iomanip>
#include <iostream>
#include <map>
#include <math.h>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <stdio.h>
#include <string.h>
#include <string>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
ll mult_mod(ll x, ll y, ll mod){
return (x * y - (ll)(x / (long double)mod * y + 1e-3) * mod + mod) % mod;
}
ll pow_mod(ll a, ll b, ll p){
ll res = 1;
while (b){
if (b & 1)
res = mult_mod(res, a, p);
a = mult_mod(a, a, p);
b >>= 1;
}
return res % p;
}
ll gcd(ll a, ll b){
return b ? gcd(b, a % b) : a;
}
const int N = 100;
int q;
ll n, ans;
int t[N];
int main(){
#ifndef ONLINE_JUDGE
freopen("my_in.txt", "r", stdin);
#endif
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin >> q;
while (q -- ){
memset(t, 0, sizeof(t));
ans = 0;
cin >> n;
int cnt = 0;
ll tmp = n;
while (tmp){
tmp /= 3;
t[cnt ++ ] = n - 3 * tmp;
n = tmp;
}
int flag = -1;
for (int i = 0; i < cnt; i ++ ){
if (t[i] >= 2){
flag = i;
t[i] = 0;
t[i + 1] ++ ;
}
}
if (flag != -1){
for (int i = 0; i < flag; i ++ )
t[i] = 0;
}
ll fac = 1;
for (int i = 0; i <= cnt; i ++ ){
ans += t[i] * fac;
fac *= 3;
}
cout << ans << "\n";
}
return 0;
}
D2. Too Many Segments (hard version)
-
思路:看了其他dalao博客的思路 将所有线段用set维护 然后从小到大枚举端点 将左端点覆盖到这个点的线段加入set中 然后线段数量大于k时移除右端点最大的线段 最后将右端点等于这个点的线段全部移除 (太妙了
-
AC代码
#include <algorithm>
#include <iomanip>
#include <iostream>
#include <map>
#include <math.h>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <stdio.h>
#include <string.h>
#include <string>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
ll mult_mod(ll x, ll y, ll mod){
return (x * y - (ll)(x / (long double)mod * y + 1e-3) * mod + mod) % mod;
}
ll pow_mod(ll a, ll b, ll p){
ll res = 1;
while (b){
if (b & 1)
res = mult_mod(res, a, p);
a = mult_mod(a, a, p);
b >>= 1;
}
return res % p;
}
ll gcd(ll a, ll b){
return b ? gcd(b, a % b) : a;
}
ll lcm(ll a, ll b){
return a / gcd(a, b) * b;
}
typedef pair<ll, ll> pii;
const int N = 2e5 + 10;
int n, k, l, r;
vector<pii> vec[N];
vector<int> ans;
set<pii> st;
int main(){
#ifndef ONLINE_JUDGE
freopen("my_in.txt", "r", stdin);
#endif
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin >> n >> k;
for (int i = 1; i <= n; i ++ ){
cin >> l >> r;
vec[l].push_back({r, i});
}
for (int i = 0; i < N; i ++ ){
for (int j = 0; j < vec[i].size(); j ++ )
st.insert(vec[i][j]);
while (st.size() > k){
ans.push_back(st.rbegin() -> second);
st.erase( -- st.end());
}
while (!st.empty() && st.begin() -> first == i){
st.erase(st.begin());
}
}
cout << ans.size() << "\n";
for (int i = 0; i < ans.size(); i ++ ){
if (i != ans.size() - 1)
cout << ans[i] << " ";
else
cout << ans[i] << "\n";
}
return 0;
}
/*
7 2
11 11
9 11
7 8
8 9
7 8
9 11
7 9
3
7 4 6
*/
/*
5 1
29 30
30 30
29 29
28 30
30 30
3
4 1 5
*/
/*
6 1
2 3
3 3
2 3
2 2
2 3
2 3
4
6 5 3 1
*/
E. By Elevator or Stairs?
-
思路:比较简单的dp 详细见代码
-
AC代码
#include <algorithm>
#include <iomanip>
#include <iostream>
#include <map>
#include <math.h>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <stdio.h>
#include <string.h>
#include <string>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
ll mult_mod(ll x, ll y, ll mod){
return (x * y - (ll)(x / (long double)mod * y + 1e-3) * mod + mod) % mod;
}
ll pow_mod(ll a, ll b, ll p){
ll res = 1;
while (b){
if (b & 1)
res = mult_mod(res, a, p);
a = mult_mod(a, a, p);
b >>= 1;
}
return res % p;
}
ll gcd(ll a, ll b){
return b ? gcd(b, a % b) : a;
}
ll lcm(ll a, ll b){
return a / gcd(a, b) * b;
}
const int N = 2e5 + 10;
const int M = 3;
int n, c;
int a[N], b[N];
int dp[N][M];
int main(){
#ifndef ONLINE_JUDGE
freopen("my_in.txt", "r", stdin);
#endif
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin >> n >> c;
memset(dp, 0x3f, sizeof(dp));
dp[1][1] = 0, dp[1][2] = c;
for (int i = 1; i < n; i ++ )
cin >> a[i];
for (int i = 1; i < n; i ++ )
cin >> b[i];
for (int i = 1; i < n; i ++ ){
dp[i + 1][1] = min(dp[i + 1][1], dp[i][1] + a[i]);
dp[i + 1][1] = min(dp[i + 1][1], dp[i][2] + a[i]);
dp[i + 1][2] = min(dp[i + 1][2], dp[i][1] + c + b[i]);
dp[i + 1][2] = min(dp[i + 1][2], dp[i][2] + b[i]);
}
for (int i = 1; i <= n; i ++ ){
if (i != n)
cout << min(dp[i][1], dp[i][2]) << " ";
else
cout << min(dp[i][1], dp[i][2]) << "\n";
}
return 0;
}
/*
0 2
7 8
13 17
31 18
24 28
40 35
53 36
37 46
54 40
57 45
*/
/*
0 1
3 2
4 4
7 7
8 11
11 13
14 13
14 15
18 16
17 19
*/