poj 1181(大数判素数 ,分解)
1 //miller_rabin 判断一个大数是否是素数 2 //pollard_rho 大数因子分解 3 #include<cstdio> 4 #include<cstdlib> 5 #include<cstring> 6 #include<cmath> 7 #include<algorithm> 8 9 using namespace std; 10 11 #define LL long long 12 const LL Max = (LL) 1 << 62; 13 LL p[10]={2,3,5,7,11,13,17,19,23,29}; 14 15 //计算a*b%n 16 inline LL multi_mod(LL a,LL b,LL mod) 17 { 18 LL sum=0; 19 while(b) 20 { 21 if(b&1) sum = (sum + a) % mod; 22 a <<= 1; 23 b >>= 1; 24 if (a >= mod) a %= mod; 25 } 26 return sum; 27 } 28 29 //计算a^b%n; 30 inline LL quick_mod(LL a,LL b,LL mod) 31 { 32 LL sum = 1; 33 while(b) 34 { 35 if(b & 1) sum = multi_mod(sum, a, mod); 36 a = multi_mod(a, a, mod); 37 b >>= 1; 38 } 39 return sum; 40 } 41 42 bool miller_rabin(LL n) 43 { 44 LL u,m,buf; 45 int k = 0; 46 //将n分解为m*2^k 47 if(n==2) return true; 48 if(n<2 || !(n&1)) return false; 49 m = n - 1; 50 while(!(m&1)) 51 k++,m >>= 1; 52 for(int i = 0; i < 9; ++i) 53 { 54 if(p[i] >= n) return true; 55 u = quick_mod(p[i], m, n); 56 if(u==1) continue; 57 for(int j = 0; j < k; ++j) 58 { 59 buf = multi_mod(u, u, n); 60 if(buf == 1 && u != 1 && u != n - 1) 61 return false; 62 u = buf; 63 } 64 //如果p[i]^(n-1)%n!=1那么n为合数 65 if(u - 1) return false; 66 } 67 return true; 68 } 69 70 LL gcd(LL a, LL b) 71 { 72 return b == 0 ? a: gcd(b, a%b); 73 } 74 //寻找n的一个因子,该因子并不一定是最小的,所以下面要二分查找最小的那个因子 75 LL pollard(LL n ) 76 { 77 LL x,y,c=0,d,i=1,k=2; 78 while(c==0 || c==2 ) c = abs( rand())%(n-1) + 1; 79 x = y = (rand( )%( n-1 )) + 1; 80 do 81 { 82 i++; 83 d = gcd( y + n - x, n ); 84 if( d >1 && d < n ) 85 return d; 86 if( i == k ) 87 { 88 y = x; k <<= 1; 89 } 90 x = (multi_mod( x , x, n )+n-c )%n; 91 }while( x != y ); 92 return n; 93 } 94 95 LL pollard_min(LL n) 96 { 97 LL p,a,b=Max; 98 if(n==1) return Max; 99 if(miller_rabin(n)) return n; 100 p = pollard(n); 101 a = pollard_min(p);//二分查找 102 b = pollard_min(n / p); 103 return a < b ? a : b; 104 } 105 106 int main(void) 107 { 108 LL T; 109 LL n; 110 scanf("%lld",&T); 111 while(T--) 112 { 113 scanf("%lld",&n); 114 if(miller_rabin(n)) 115 { 116 puts("Prime"); 117 } 118 else printf("%lld\n",pollard_min(n)); 119 } 120 return 0; 121 }