poj 2773 (欧拉函数)

分析: [1,m-1]有phi[m]个数与m互质。则 显然 [n * m + 1, ((n + 1)* m) - 1]也有phi[m]个数与之互质。(n = 0,1,2,...)

RE 的考虑 m = 1 这种情况。

 1 // File Name: 2773.cpp
 2 // Author: Missa_Chen
 3 // Created Time: 2013年05月28日 星期二 13时58分13秒
 4 
 5 #include<iostream>
 6 #include<string>
 7 #include<algorithm>
 8 #include<cstdio>
 9 #include<cstring>
10 #include<cmath>
11 #include<queue>
12 #include<map>
13 #include<stack>
14 #include<set>
15 #include<cstdlib>
16 
17 using namespace std;
18 
19 #define LL long long
20 const int inf = 0x3f3f3f3f;
21 const int maxn = 1e6 + 10;
22 int phi[maxn], pn, prim[maxn];
23 bool p[maxn];
24 void init_euler(int n)
25 {
26     phi[1] = 0;
27     memset(p,0,sizeof(p));
28     p[0] = p[1] = 1;
29     for (int i = 2; i <= n; ++i)
30     {
31         if (!p[i])
32         {
33             phi[i] = i - 1;
34             prim[pn++] = i;
35         }
36         for (int j = 0; j < pn && prim[j] * i <= n; ++j)
37         {
38             p[prim[j] * i] = 1;
39             if (i % prim[j])
40                 phi[i * prim[j]] = phi[i] * (prim[j] - 1);
41             else
42             {
43                 phi[i * prim[j]] = phi[i] * prim[j];
44                 break;
45             }
46         }
47     }
48 }
49 LL gcd(LL a, LL b)
50 {
51     while (b != 0)
52     {
53         LL c = a % b;
54         a = b;
55         b = c;
56     }
57     return a;
58     //return b == 0 ? a : gcd(b, a % b);
59 }
60 int m, k;
61 
62 int main()
63 {
64     init_euler((int)1e6);
65     while (~scanf("%d%d",&m,&k))
66     {
67         if (m == 1)
68         {
69             printf("%d\n",k);
70             continue;
71         }
72         int n = k / phi[m];
73         k -= n * phi[m];
74         if (k == 0) k = phi[m], n--;
75         for (LL i = n * m + 1; ; ++i)
76         {
77             if (gcd(m, i) == 1LL) k--;
78             if (k == 0)
79             {
80                 printf("%lld\n",i);
81                 break;
82             }
83         }
84     }
85     return 0;
86 }

 

posted @ 2013-05-28 14:33  Missa  阅读(351)  评论(0编辑  收藏  举报