poj 1966(无向图点连通度 )
无向图点连通度:
构造有向图,再枚举源汇点求最小割。
1、无向图中任一个点u拆边为u和u+N,连容量为1的有向边。
2、对于无向图中原有的任意无向边(u,v),在构造的有向图中添加边(u+N,v)和(v+N,v),容量均为无穷。(拆边规则)
3、O(n^2)枚举源点(拆后出点)、汇点(拆后入点)求最小割的最小值(注意源点与汇点直接相连的情况,显然此时最大流流出来的是inf)。
View Code
1 // File Name: 1966.cpp 2 // Author: Missa 3 // Created Time: 2013/4/19 星期五 10:29:17 4 5 #include<iostream> 6 #include<cstdio> 7 #include<cstring> 8 #include<algorithm> 9 #include<cmath> 10 #include<queue> 11 #include<stack> 12 #include<string> 13 #include<vector> 14 #include<cstdlib> 15 #include<map> 16 #include<set> 17 using namespace std; 18 #define CL(x,v) memset(x,v,sizeof(x)); 19 #define R(i,st,en) for(int i=st;i<en;++i) 20 #define LL long long 21 22 const int inf = 0x3f3f3f3f; 23 const int maxn = 105; 24 const int maxm = 10010; 25 struct Edge 26 { 27 int v, c, next;//指向点,流量,下一个点 28 }p[maxm << 1]; 29 int head[maxn], e; 30 int d[maxn], cur[maxn];//层次记录,当前弧优化 31 int n, m, st, en; 32 void init() 33 { 34 e = 0; 35 memset(head, -1, sizeof(head)); 36 } 37 void addEdge(int u, int v, int c) 38 { 39 p[e].v = v; p[e].c = c; 40 p[e].next = head[u];head[u] = e++; 41 p[e].v = u; p[e].c = 0; //无向图时逆边赋值流量cap,有向图时赋值0. 42 p[e].next = head[v];head[v] = e++; 43 } 44 int bfs(int st, int en) 45 { 46 queue <int> q; 47 memset(d, 0, sizeof(d)); 48 d[st] = 1; 49 q.push(st); 50 while (!q.empty()) 51 { 52 int u = q.front(); q.pop(); 53 for (int i = head[u]; i != -1; i = p[i].next) 54 { 55 if (p[i].c > 0 && !d[p[i].v]) 56 { 57 d[p[i].v] = d[u] + 1; 58 q.push(p[i].v); 59 } 60 } 61 } 62 return d[en]; 63 } 64 int dfs(int u, int a)//a表示流量 65 { 66 if (u == en || a == 0) return a; 67 int f, flow = 0; 68 for (int& i = cur[u]; i != -1; i = p[i].next) 69 { 70 if (d[u] + 1 == d[p[i].v] && (f = dfs(p[i].v,min(a,p[i].c))) > 0) 71 { 72 p[i].c -= f; 73 p[i^1].c += f; 74 flow += f; 75 a -= f; 76 if (!a) break; 77 } 78 } 79 return flow; 80 } 81 int dinic(int st, int en, int tmp) 82 { 83 int res = 0; 84 while (bfs(st, en)) 85 { 86 for (int i = 0; i <= n; ++i) 87 cur[i] = head[i]; 88 res += dfs(st, inf); 89 if (res > tmp) return res; 90 } 91 return res; 92 } 93 int N; 94 struct Node 95 { 96 int u, v; 97 }edg[maxm]; 98 void build(int u, int v) 99 { 100 init(); 101 n = N << 1; 102 st = u + N, en = v; 103 for (int i = 1; i <= N; ++i) 104 addEdge(i, i +N, 1); 105 for (int i = 0; i < m; ++i) 106 { 107 addEdge(edg[i].u + N, edg[i].v, inf); 108 addEdge(edg[i].v + N, edg[i].u, inf); 109 } 110 } 111 112 int main() 113 { 114 while(~scanf("%d%d",&N,&m)) 115 { 116 for (int i = 0; i < m; ++i) 117 { 118 scanf(" (%d,%d)", &edg[i].u, &edg[i].v); 119 edg[i].u++; 120 edg[i].v++; 121 } 122 int ans = inf; 123 for (int i = 1; i <= N; ++i) 124 for (int j = 1; j <= N; ++j) 125 { 126 if ( i == j) continue; 127 build(i, j); 128 int tmp = dinic(st, en, ans); 129 if ( tmp < ans) 130 ans = tmp; 131 } 132 if (ans == inf) ans = N; 133 printf("%d\n",ans); 134 } 135 return 0; 136 }