C++边双缩点,Redundant Paths 分离的路径
一道比较简单的 关于边双的题,个人感觉难度不大。
求出整个图的边双,根据边双的定义我们可以延伸出 边双的任两个点都有至少两种路径来互相抵达(因为其不存在割边) 。不妨将每个边双缩成一个点,样例中的图便变成了一棵树:
为什么呢?因为缩了点之后的图如果存在环,这个环便又可以构成一个边双了。
我们发现只要 将所有的叶子节点(度为1)的节点连起来,整个图便就构成了一个边双。那么我们的做法就很明确了,选取一个度不为1的点作为根,统计度为1的节点的数量n,答案便是(n+1)/2.
#include <iostream>
#include <vector>
#include <stack>
#include <cstring>
#include <cstdio>
using namespace std;
#define N 5010
#define M 10010
#define LL long long
struct node {
int to,no;
node () {};
node (int T,int No) {
to=T;no=No;
}
};
LL flag,ans,value[M],n,m,num,cntn,DFN[N],IsCut[M],low[N];
vector <node> G[N];
LL read() {
LL f=1,s=0;char a=getchar();
while(!(a>='0'&&a<='9')) { if(a=='-') f=-1 ; a=getchar(); }
while(a>='0'&&a<='9') { s=s*10+a-'0'; a=getchar();}
return f*s;
}
int min(int a,int b) {
if(a<b) return a;
return b;
}
void Tarjan(LL u,LL fano) {
DFN[u]=low[u]=++num;
for(LL i=0;i<G[u].size();i++) {
LL v=G[u][i].to,vno=G[u][i].no;
if(!DFN[v]) {
Tarjan(v,vno);
if(low[v]>DFN[u]) {
IsCut[vno]=1;
cntn++;
}
low[u]=min(low[u],low[v]);
}
else if(DFN[u]>DFN[v] && vno!=fano)
low[u]=min(low[u],DFN[v]);
}
}
bool vis[N];
int belong[M],rel[N],cntno,cnt=1;
void init() {
memset(low,0,sizeof(low));
memset(DFN,0,sizeof(DFN));
memset(IsCut,0,sizeof(IsCut));
memset(vis,0,sizeof(vis));
cin>>n>>m;
for(int i=1;i<=n;i++)
G[i].clear();
cntno=cntn=0;
for(int i=1,u,v,w;i<=m;i++) {
u=read();v=read();
G[u].push_back( node (v,cnt) );
G[v].push_back( node (u,cnt++) );
}
}
int dfs(int u) {
belong[u]=cntno;
for(int i=0,v,vno;i<G[u].size();i++) {
v=G[u][i].to,vno=G[u][i].no;
if(!IsCut[vno] && !belong[v])
dfs(v);
}
}
bool book[N][N];
int main() {
init();
Tarjan(1,-1);
for(int i=1;i<=n;i++)
if(!belong[i]) {
cntno++;
dfs(i);
}
//cout<<cntno<<endl;
for(int i=1;i<=n;i++)
for(int j=0;j<G[i].size();j++) {
int x=belong[i],y=belong[G[i][j].to];
if(x!=y ) {
rel[x]++; //rel统计边双的度
}
}
for(int i=1;i<=n;i++)
if(rel[i]==1)
ans++;
cout<<(ans+1)/2<<endl;
}