阿贝尔变换
阿贝尔(Abel)变换
什么是 Abel 变换
设 \(B_{n} = \sum\limits_{i = 1} ^ {n}b_{i}\),,则当 \(n \geq 2\) 时,\(b_{i} = B_{i} - B_{i - 1}\),且 \(B_{1} = b_{1}\) ,于是当 \(n \geq 2\) 时:
\[\begin{aligned}
\sum\limits_{i = 1} ^ {n} c_ib_i
&= \sum\limits_{i = 2} ^ {n} c_{i} (B_{i} - B_{i - 1}) + c_{1}b_{1} \\
&= \sum\limits_{i = 2} ^ {n} c_{i}B_{i} - \sum\limits_{i = 1} ^ {n - 1} c_{i + 1}B_{i} + c_{1}b_{1} \\
&= \sum\limits_{i = 1} ^ {n} c_{i}B_{i} - \sum\limits_{i = 1} ^ {n - 1} c_{i + 1}B_{i}\\
&= \sum\limits_{i = 1} ^ {n - 1} (c_{i} - c_{i + 1})B_{i} + c_nB_{n}
\end{aligned}
\]
等差 \(\times\) 等比型数列求和
可以把等差数列推广到任意多项式数列的求和)
如果 \(c_{n}\) 是等差数列,那么 \(c_{n + 1} - c_{n}\) 就是一个常数, \(b_{n}\) 是等比数列,那么 \(B_{n}\) 可以通过等比数列求和快速计算,这样就能计算出 \(\sum\limits_{i = 1} ^ {n}c_{i}b_{i}\).
例:\(c_{n} = n, \ b_{n} = \frac{1}{2^{n}}\) ,求 \(T_{n} = \sum\limits_{i = 1} ^ {n} c_{i}b_{i}\).
由 Abel 变换:
\[\begin{aligned}
T_{n} &= \sum\limits_{i = 1} ^ {n} c_{i}b_{i}\\
&= \sum\limits_{i = 1} ^ {n - 1}(-1)(1 - \frac{1}{2 ^{n}}) + n \times (1 - \frac{1}{2^{n}}) \\
&=1 - \frac{1}{2^{n - 1}} - n + 1 + n - \frac{n}{2^{n}} \\
&= 2 - \frac{n + 2}{2 ^ {n}}
\end{aligned}
\]
例:求 \((2n - 1)2^{n}\) 的前 \(n\) 项和.
\[\begin{aligned}
T_{n} &= \sum\limits_{i = 1} ^ {n} (2n - 1)2^{n} \\
&= \sum\limits_{i = 1} ^ {n - 1}-2 \times (2 ^ {i + 1} - 2) + (2n - 1) \times (2 ^ {n + 1} - 2) \\
&= (2n - 3) 2^{n + 1} + 6
\end{aligned}
\]
例: 求 \(n ^ {2}\) 的前 \(n\) 项和.
设 \(c_n = b_n = n\) ,那么由 Abel 变换:
\[\begin{aligned}
T_{n} &= \sum\limits_{i = 1} ^ {n} n \times n \\
&= \sum\limits_{i = 1} ^ {n - 1} -1 \times \frac{i(i+1)}{2} + \frac{n^{2}(n +1)}{2} \\
&= -\frac{1}{2} \times (T_{n - 1} + n ^ {2} + \frac{n(n - 1)}{2} - n^{2}) + \frac{n^{2}(n + 1)}{2} \\
\frac{3}{2} T_{n} &= -\frac{1}{2}(\frac{-n^{2} - n}{2}) + \frac{n^{2}(n + 1)}{2}\\
&= \frac{n(n + 1)(2n + 1)}{4} \\
T_{n} &= \frac{n(n+1)(2n + 1)}{6}
\end{aligned}
\]
按这个思路,我们可以求出数列 \({n^{m}}\) 的前 \(k\) 项和。