Miraclys

一言(ヒトコト)

极限T

例1: 求:$$\lim_{x \to \frac{\pi}{2}} \sin(x)^{\tan(x)}$$
\(\\\)
一般这种指数形,我们都往\(\lim\limits_{x \to +\infty}\left( 1+\frac{1}{x}\right)^{x} = e\)这个重要极限上凑,所以这个式子我们可以化为:

\[\lim_{x \to \frac{\pi}{2}} (1+\sin(x)-1)^{\frac{1}{\sin(x)-1}\times \frac{\sin(x) \times (\sin(x)-1)}{\cos(x)}} \\ e^{\lim\limits_{x \to \frac{\pi}{2}}\frac{\sin(x) \times (\sin(x)-1)}{\cos(x)}} \\ e^{\lim\limits_{x \to \frac{\pi}{2}}\frac{1-\cos^{2}(x)-\sqrt{1-\cos^{2}(x)}}{\cos(x)}} \\ e^{\lim\limits_{x \to \frac{\pi}{2}} \frac{1-\cos^{2}(x)-(1-\frac{1}{2}\cos^{2}(x))}{\cos(x)}} \\ e^{\lim\limits_{x \to \frac{\pi}{2}}\frac{-\frac{1}{2}\cos^{2}(x)}{\cos(x)}} \\ e^{\lim\limits_{x \to \frac{\pi}{2}}-\frac{1}{2}\cos(x)} \]

\(\\\)
所以,最后答案为:$$e^{0} = 1$$
\(\\\)
例2:求$$\lim\limits_{n \to +\infty} \left( \cos(\frac{x}{n}) + \lambda \sin(\frac{x}{n})\right) ^ {n}$$
\(\\\)
有个\(n\)次方,想办法提下来,变为:\(e ^ {\lim\limits_{n \to +\infty} n \times \ln\left( \cos(\frac{x}{n})+\lambda\sin(\frac{x}{n})\right)}\),对于\(\lim\limits_{n \to +\infty} n \times \ln\left( \cos(\frac{x}{n})+\lambda\sin(\frac{x}{n})\right)\),发现为无穷乘0型,变形为:\(\lim\limits_{n \to +\infty}\dfrac{\ln\left( \cos(\frac{x}{n} + \lambda\sin(\frac{x}{n}))\right)}{\frac{1}{n}}\),运用洛必达法则,则有$$\lim\limits_{n \to +\infty} \dfrac{\frac{1}{\cos(\frac{x}{n}) + \lambda\sin(\frac{x}{n})}\times \left(-\sin(\frac{x}{n}) + \lambda\cos(\frac{x}{n})\right) \times x\left( \frac{1}{n}\right) ^ {'} }{\left(\frac{1}{n} \right) ^ {'}} $$ $$\ \lim\limits_{n \to +\infty} \frac{1}{\cos(\frac{x}{n}) + \lambda\sin(\frac{x}{n})}\times \left(-\sin(\frac{x}{n}) + \lambda\cos(\frac{x}{n})\right) \times x $$ $$\ \lim\limits_{n \to +\infty}\dfrac{\lambda \times \cos(0) \times x}{\cos(0) + \sin(0)}$$,所以最终为\(\lambda x\),即最终答案为$$e ^ {\lambda x}$$
\(\\\)
例3:$$\lim\limits_{n \to +\infty} (1+x)(1+x ^ {2})(1+x ^ {4})(1+x ^ {8})...(1+x ^ {2 ^ {n}}), |x| < 1$$
\(\\\)
方法1:我们发现\(x\)的指数后一项都是前一项的二倍,即每一项\(x\)都是前面的平方,容易想到平方差公式?将式子化为:$$\lim\limits_{n \to +\infty}\dfrac{(1-x) \times (1+x)(1+x ^ {2})(1+x ^ {4})(1+x ^ {8})...(1+x ^ {2 ^ {n}})}{1-x}$$

\[\lim\limits_{n \to +\infty}(1-x ^ {2})(1 + x ^ {2})(1 + x ^ {4})...(1 + x ^ {2 ^ {n}}) \]

最终为:$$\lim\limits_{n \to +\infty} \frac{ 1-x ^ {2 ^ {n}}}{1-x} = \frac{1}{1-x}$$
\(\\\)
方法2:找规律吧??
我们列举一下\(n\)取不同值的情况:$$1 + x$$ $$1 + x + x ^ {2} + x ^ {3}$$ $$1 + x + x ^ {2} + x ^ {3} + x ^ {4} + x ^ {5} + x ^ {6} + x ^ {7}$$
我们发现都是加到\(x ^ {2 ^ {n} - 1}\),所以原式为:$$1 + x + x ^ 2 + ... + x ^ {2 ^ {n}-1}$$,观察就是等比数列求和:

\[\frac{1-x ^ {2 ^ {n}}}{1-x} = \frac{1}{1-x} \]

\(\\\)
例3:求$$\lim\limits_{n \to +\infty} \left( 1+\frac{1}{n^{2}}\right) \left( 1+\frac{2}{n^{2}}\right) \left( 1+\frac{3}{n^{2}}\right)...\left( 1+\frac{n}{n^{2}}\right)$$
\(\\\)
我们采用夹逼的方法。
对于右边:
\(\left( 1+\frac{1}{n ^ 2}\right) \left( 1+\frac{2}{n ^ 2}\right)...\left( 1+\frac{n}{n ^ 2}\right) \leq \left( 1+ \frac{\frac{n+1}{2}}{n^{2}}\right) ^ {n}\)
\(\lim\limits_{n \to +\infty} \left( 1+ \frac{\frac{n + 1}{2}}{n ^ 2}\right) ^ n = \lim\limits_{n \to +\infty}\left( 1+\frac{\frac{n + 1}{2}}{n ^ 2}\right) ^ {\frac{n ^ 2}{\frac{n + 1}{2}} \times \frac{n+1}{2n}} = e^{\lim\limits_{n \to +\infty} \frac{n + 1}{2n}} = e ^ \frac{1}{2} = \sqrt{e}\)
对于左边:
\(\left( 1+\frac{1}{n ^ 2}\right) \left( 1+\frac{2}{n ^ 2}\right)...\left( 1+\frac{n}{n ^ 2}\right) \geqslant \left( 1+ \frac{n + 1}{n^2}\right) ^ {\frac{n(n+1)}{2}} = e^{1/2} = \sqrt{e}\)
\(\\\)
所以原式的极限为:\(\sqrt{e}\)
例4:
一道经典stolz的例题。
设数列\({a_{n}}\),满足\(a_{n + 1} = a_{n} + \frac{1}{a_{n}}, a_{1} = 1\),证明\(\lim\limits_{n \to +\infty} \frac{a_{n}}{\sqrt{n}} = \sqrt{2}\)
\(\\\)
\(a_{n + 1} - a_{n} = \frac{1}{a_{n}}\),和数学归纳法可以证明该数列为单增数列。设\(\lim\limits_{n \to +\infty} a_{n} = a\),则有\(a = a + \frac{1}{a}\),无解,所以\(\lim\limits_{n \to +\infty} a_{n} = +\infty\)(由单调有界原则得到)。那么显然这个式子就符合stolz第一公式。
\(\\\)
方法1:

\[\lim\limits_{n \to +\infty} \frac{a_{n}}{\sqrt{n}} = \lim\limits_{n \to +\infty} \frac{a_{n} - a_{n - 1}}{\sqrt{n} - \sqrt{n - 1}} = \lim\limits_{n \to +\infty} \frac{\frac{1}{a_{n - 1}}}{\sqrt{n} - \sqrt{n - 1}} = \lim\limits_{n \to +\infty} \frac{\sqrt{n} + \sqrt{n-1}}{a_{n - 1}} \]

所以我们可以得到:$$\lim\limits_{n \to +\infty} \frac{a_{n - 1}}{\sqrt{n - 1}} = \lim\limits_{n \to +\infty} \frac{a_{n}}{\sqrt{n}} = \lim\limits_{n \to +\infty} \frac{\sqrt{n} + \sqrt{n - 1}}{a_{n - 1}}$$
所以:$$\lim\limits_{n \to +\infty} a_{n - 1} ^ {2} = \sqrt{n ^ 2 - n} + n - 1$$
则:$$\lim\limits_{n \to +\infty} \frac{a_{n} ^ 2}{n} = \sqrt{1 - \frac{1}{n}} + 1 - \frac{1}{n} = 2$$
所以:$$\lim\limits_{n \to +\infty} \frac{a_{n}}{\sqrt{n}} = \sqrt{2}$$
\(\\\)
方法2:
我们发现上面的式子直接stolz的话分母看起来会很麻烦,所以我们可以证明:\(\lim\limits_{n \to +\infty} \frac{a_{n} ^ {2}}{n} = 2\),对于这个式子进行stolz,可以得到原式极限等于:$$\lim\limits_{n \to +\infty} a_{n}^ {2} - a_{n - 1} ^ {2} = \lim\limits_{n \to +\infty} 2 + \frac{1}{a_{n} ^ 2} = 2$$
所以\(\lim\limits_{n \to +\infty} \frac{a_{n}}{\sqrt{n}} = \sqrt{2}\)
\(\\\)
例5:
\(\\\)
求:$$\lim\limits_{n \to +\infty}\frac{n}{\sqrt[n]{n!}}$$
一个经典的极限式子,需要我们记住这个极限。

\[\lim\limits_{n \to +\infty} \frac{n}{\sqrt[n]{n!}} = \lim\limits_{n \to +\infty} \sqrt[n]{\frac{n^{n}}{n!}} = \lim\limits_{n \to +\infty} e ^ {\frac{1}{n} \times \ln\frac{n ^ {n}}{n!}} = \lim\limits_{n \to +\infty} e ^ {\frac{1}{n} \times \sum\limits_{k=1}^{n}\ln\frac{n}{k}} \\ = \lim\limits_{n \to +\infty} e ^ {-1\times \frac{1}{n} \times \sum\limits_{k=1}^{n}\ln\frac{k}{n}} = e ^ {\int_{1} ^ {0}\ln x \mathrm{d}x} = e \]

\(\\\)
例6:
\(\\\)
求:$$\lim\limits_{x \to -\infty}\sqrt{4x^{2} - 8x + 5} + 2x + 1$$
原式等于:$$\lim\limits_{n \to +\infty} \sqrt{4x ^ {2} + 8x + 5} - 2x + 1$$
然后变为分式,求得结果为:\(3\)
\(\\\)
例7:
\(\\\)
求:$$\lim\limits_{x \to 0} \frac{1 - \cos x \sqrt[2]{\cos 2x} \sqrt[3]{\cos 3x}...\sqrt[n]{\cos nx}}{x ^ {2}}$$
原式可以变为:

\[\lim\limits_{x \to 0} \frac{1 - e ^ {\ln \cos x + \frac{1}{2}\ln \cos 2x + \frac{1}{3}\ln \cos 3x + ... +\frac{1}{n} \ln \cos nx } }{x ^ {2}} \\ = \lim\limits_{x \to 0} - \frac{ \ln \cos x + \frac{1}{2}\ln \cos 2x + \frac{1}{3}\ln \cos 3x + ... + \frac{1}{n}\ln \cos nx}{x ^ 2} \\ = \lim\limits_{x \to 0} \frac{x ^ {2} \times \frac{1}{2} \times \left( 1 + 2 + 3 + ... + n\right)}{x ^ 2} \\ = \frac{n(n + 1)}{4} \]

\(\\\)
例8:
求:$$\lim\limits_{x \to 0} \frac{x ^ {x} - \sin ^{x} x}{e ^ {x ^ {3}} - 1}$$
原式等于:$$\lim\limits_{x \to 0} \frac{x ^ {x} - \sin ^ {x} x}{{x ^ {3}}} = \lim\limits_{x \to 0} x ^ {x - 3}\left(1 - \left( \frac{\sin x}{x}\right) ^ {x} \right) = \lim\limits_{x \to 0} x ^ {x - 3} \left( 1 - e ^ {x \ln \frac{\sin x}{x}}\right) = \lim\limits_{x \to 0} -x ^ {x - 3} x \ln \frac{\sin x}{x} = \lim\limits_{x \to 0} x ^ {x} \frac{\ln \frac{x}{\sin x}}{x ^ {2}} = \lim\limits_{x \to 0} x ^ {x} \times \lim\limits_{x \to 0} \frac{\ln \frac{x}{\sin x}}{x ^ {2}} = \lim\limits_{x \to 0} \frac{\ln \frac{x}{\sin x}}{x ^ {2}}$$

\[= \lim \limits_{x \to 0} \frac{\sin x}{2x ^ {2}} \times (\frac{\sin x - x \cos x}{\sin ^ {2} x})= \frac{1}{6} \]

\(\\\)
例9:
求:$$ \lim\limits_{x \to 0} \frac{(1 + x) ^ {\frac{1}{x}} - (1 + 2x) ^ {\frac{1}{2x}}}{\sin x} $$
原式等于:$$\lim\limits_{x \to 0} \frac{(1 + x) ^ {\frac{1}{x}} \left( 1 - \frac{1 + 2x}{(1 + x) ^ {2}} ^ {^ {\frac{1}{2x}}}\right) }{\sin x} = e \times \lim\limits_{x \to 0} \frac{ 1 - \left( \frac{1 + 2x}{(1 + x) ^ {2}}\right) ^ {\frac{1}{2x}}}{\sin x} $$

\[= e \times \lim\limits_{x \to 0} - \frac{\frac{1}{2x} \ln \left(\frac{1 + 2x}{(1 + x) ^ {2}} \right)}{\sin x} = e \times \lim\limits_{x \to 0} \frac{\frac{1}{2x} \ln(1 + \frac{x ^ 2}{1 + 2x})}{\sin x} \]

\[= e \times \lim\limits_{x \to 0}\frac{\frac{x ^ {2}}{1 + 2x}}{2x \sin x} = \frac{e}{2} \]

posted @ 2022-09-26 19:25  Miraclys  阅读(139)  评论(1编辑  收藏  举报

关于本博客样式

部分创意和图片借鉴了

BNDong

的博客,在此感谢