Miraclys

一言(ヒトコト)

SP1026 FAVDICE - Favorite Dice

\(\large{题目链接}\)
\(\\\)
\(\Large\textbf{Solution: } \large{1.如果目前我们已经有i种数字,那么下一次投掷有\dfrac {n-i}{n}的概率得到目前没有的数字,所以期望的步数是\dfrac {n}{n-i},那么期望总步数即为\sum \limits^{n}_{i=1}\dfrac {n}{n-i}=\sum \limits^{n}_{i=1}\dfrac {n}{i}。\\ 2.考虑dp。设f_i表示已经有了i种数字还需要的步数,那么f_n = 0,所以考虑倒推。\\再投掷一次有两种可能,一种是得到一个未得到的数字,一种是已经得到的,所以容易写出递推式:f_i = f_i + \dfrac {i}{n}f_i + \dfrac {n-i}{n}f_{i + 1} + 1,\\将上面的式子化简即为f_i = f_{i + 1} + \dfrac {n}{n-i}。}\)
\(\\\)
\(\Large\textbf{Code: }\)\

#include <bits/stdc++.h>
using namespace std;

const int N = 1005;

double f[N];

int read() {
	int x = 0;
	char c = getchar();
	while (!isdigit(c)) c = getchar();
	while (isdigit(c)) x = x * 10 + c - '0', c = getchar();
	return x;
}

double sol(int n) {
	f[n] = 0;
	for (int i = n - 1; i >= 0; --i) f[i] = f[i + 1] + 1.0 * n / (n - i);
	return f[0];
}

int main() {
	int t, n;
	t = read();
	while (t--) {
		n = read();
		printf("%.2lf\n", sol(n));
	} 
	return 0;
} 
posted @ 2020-04-02 19:15  Miraclys  阅读(107)  评论(0编辑  收藏  举报

关于本博客样式

部分创意和图片借鉴了

BNDong

的博客,在此感谢