PKUSC2019 D2T2

PKUSC2019 D2T2

把n(n<=100)的树(无边权)放在m维空间上(坐标都是整点),使得任意两个点的曼哈顿距离都是原树上的距离

求最小的m,并给出构造方案

 

性质好题,巧妙构造题。

原树上相邻的边,一定是某一维+1或者-1,其他不变

先确定一个根,不妨给每个边一个+i或者-i,表示这个边指向的儿子从父亲过来,增加了第i个基向量或者减去

以+(1,0,0,0...),-(1,0,0,0...)为例(简称+1,-1)

 

发现,两个点(x,y)曼哈顿距离可能比树上的实际距离小,这一定是因为,(x,y)路径上的某一次向量改变相互消去了!

 

结论一:

+1或者-1一定是直上直下的链(可以不连续),否则出现

那么(x,y)的距离,实际上两个+1减法减掉了。

结论二:

+1和-1不能存在祖先后代关系

否则出现:

那么(x,y)的距离还是把+1和-1做和消掉了。

 

 

但是,为了保证m最小,每一维的应当充分利用。

所以+1,-1连续的链一定不劣。

如果叶子个数为k,m最小值为k/2上取整。

每个叶子头上是+1,-1,+i,-i,+j,-j。。。。

 

构造可以达到最小值:

如果暴力把基向量往上填的话,会出现这样的情况:

问号只能填新的维度,这样就浪费了。

最优情况显然是:

所以,相同维度的叶子,往上爬,要么不相遇(被之前维度隔断),要么只能在根节点相遇。

令重心(这里重心定义为,任何一个子树的叶子个数<=k/2)为根,i叶子和i+k/2叶子配对。

这样,相同维度的叶子,一定来自根的不同子树,一定合法!

posted @ 2019-06-12 19:48  *Miracle*  阅读(256)  评论(0编辑  收藏  举报