2019PKU\THU WC题解
PKU:
机试:
d1t1:
考虑拓扑序的合法性,每个点的入边必须先加入。f[S]表示先出来的是S集合的点,对应边的方案数。加入x的时候,把入边方向确定,出边自然后面会确定的
2^n*n
d1t2:
虚树,点数=边数+1,NTT,
先咕咕咕
d1t3:
地主斗。。。
炸弹,火箭先处理
剩下牌的特征值(每个方式最大的),以及对应的牌数
hash表存一下
然后再找B的
特征值要状压,还要边加入边计算特征值。
d2t1:
a[i]=0的部分分:
分成n段
每个点在每个段的方案数有相同之处
f[i][j]表示前i个,第i个取再前j段的前缀和
转移的时候
枚举最左边选择j的l
l到i的部分就是盒子放球的问题
据说是APIO赛艇弱化版0?
满分:
区间dp
dp[i][l][r],前i高位,确定了[l],[r]方案数
还要什么数位dp记录0/1
咕咕咕咕
d2t2:
两个环有公共边,
一定在一个SCC里
反之,可能八字图情况,在SCC里,却没有公共边
先求出SCC
再在SCC中求出点双连通分量个数,和就是ans
SCC中不是V-DCC的环坑定没有公共边
SCC中的V-DCC一定还是SCC
而且没有上面的情况了
所以就是一个联通块
d2t3
每个圆被完全覆盖就可以删掉
n^2*m部分分
两种方法:
①圆的面积并
②对于i,找到最左最右的圆和i的交的角度
记录红色角的最大值
左边同理
如果角相互有覆盖,A0就被覆盖了
发现所有剩下的点
都在{A0,A1,,,An,O}组成的凸包上
而且是严格的,也即不会存在一个点在凸包的边上
简单证明:
对于共线的三个点,中间的一定可以删除
对于和A,O共线并且在A,O中间的点一定可以删除
对于凸包内部的点一定可以删除
凸包上的点一定删不掉
O是变化的
对于{Ai}先建立凸包
每个O
1.判断O是不是在凸包内部或者边上
方法可以是:求x往下的射线和凸包交点的个数,把凸包劈成上下两个部分,分别二分出经过该射线的凸包的边,看有没有交即可。
如果在内部,直接输出凸包点的个数即可。
2.如果O在凸包外部
二分包住的部分删掉。
方法可以是:
劈成上下两个部分
对O分四种情况讨论
对于B,D位置,直接对上/下凸壳二分即可
对于A,C位置,对上下两个凸壳分分别二分找到第一个和下一个边的叉积为正的点,删掉中间的点即可
O(nlogn+mlogn)
数学:
10个填空题,150min
T1:
8个点的树,2个点度数3,2个点度数2,4个点度数1
求不同的树的个数(定义为,编号a和编号b之间的边存在情况都相同才相同)
prufer序列,暴力枚举生成树然后判断
或者考虑度数为3的点的连接情况,分类讨论+hash(hash不能随便写,所有的边排序之后,i是第i条边,大概用(x*131+y)*i*(i^(i*233)这种越复杂越好,多个hash也可以)
T2:
单位立方体ABCD-A'B'C'D',从A到C',只能走棱,或者面的对角线
路径不能自交(包括点,棱上)
求A到C'的最长路
3+4sqrt(2)
最多走7次
可以对顶点黑白染色
对角线走到同色点,棱走到异色点
A,C'不同色,所以走奇数次棱
由于1+6sqrt(2)不存在方案
所以3+4sqrt(2)最优
THU
d1t1:
原题:bzoj5016一个简单的询问
推式子,考虑每一个信封在所有情况中的贡献之和
就是sum1k*sum2k
可以把询问二维差分一下
莫队搞定
d1t2:
每个铁路的开通时间计算出来,
整体二分+bfs处理分治
考虑有没有铁路网,大力分情况讨论
d2t1:
主席树智障送分题
d2t2:
部分分:
n ^2询问任意两个点,看总距离是否为1,确定有无树边
次数小于1000000?
rand一个根,再n-1次询问,找到每个点的深度
深度相差1的才询问
乱搞,可以过。
d2t3:
就是找所有凸包的方案数,面积和,面积平方和
三者本质都相同
考虑求凸包的过程——先要找到左下角的点
枚举左下角的点x
其他x右上方的点按照和x的极角排序
f[i][j][k]表示,前i个点,凸包最后一个是j,倒数第二个是k,枚举下一个是否加入即可
O(n*n^3)
考虑枚举i之后,
g[j][k]表示,最后一个是j,倒数第二个是k的答案
固定j,把剩下的点按照对j的极角序排序
可以双指针,一个枚举t,一个枚举k
把g[j][k]转移到g[t][j]
复杂度O(n*n^2)