最小生成树
最小生成树:能够连接所有点的最小边权之和,但是任意两点之间的距离不一定最短(与最短路区别)
Prim算法:算法思路大致和dijkstra算法一致,只是dist不是距离源点的距离了,而是距离集合的距离(单独的一条边权)
kruskal算法:先对边进行排序,利用并查集判断是否所有边都加进来了,由于已经排好序了,加进来的边权和在所有边都加进来后一定就是最小的
#include <bits/stdc++.h>
using namespace std;
const int N = 100010, M = 100010, INF = 0x3f3f3f;
int m, n, res, cnt;
int g[N][N];
int dist[N];
bool st[N];
int P[N];
struct Edge
{
int a, b, w;
bool operator<(const Edge &W) const
{
return w < W.w;
}
} edges[M];
int prim()
{
memset(dist, 0x3f, sizeof dist);
for (int i = 0; i < n; i++)
{
int t = -1;
for (int j = 1; j <= n; j++)
{
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
}
st[t] = true;
if (i && dist[t] == INF)
return INF; // 说明没标记的点最小都是INF了,说明图不连通
if (i)
res += dist[t];
for (int j = 1; j <= n; j++)
{
if (dist[j] > g[t][j])
dist[j] = g[t][j];
}
}
return res;
}
int find(int x)
{
if (p[x] != x)
p[x] = find(p[x]);
return p[x];
}
int kruskal()
{
sort(edges, edges + m);
for (int i = 1; i <= n; i++)
p[i] = i; // 初始化并查集
int res = 0, cnt = 0;
for (int i = 0; i < m; i++)
{
int a = edges[i].a, b = edges[i].b, w = edges[i].w;
a = find(a), b = find(b);
if (a != b) // 如果两个连通块不连通,则将这两个连通块合并
{
p[a] = b;
res += w;
cnt++;
}
}
if (cnt < n - 1)
return INF;
return res;
}
int main()
{
cin >> m >> n;
// while (m--)
// {
// int a, b, c;
// cin >> a >> b >> c;
// g[a][b] = g[b][a] = min(g[a][b], c);
// }
// int t = prim();
// if (t == INF)
// cout << "impossible" << endl;
// else
// cout << t << endl;
// return 0;
int res = 0, cnt = 0;
for (int i = 0; i < m; i++)
{
int a, b, c;
cin >> a >> b >> c;
// edges[i].a = a, edges[i].b = b, edge[i].w = c;
edges[i] = {a, b, c};
}
int t = kruskal();
if (t == INF)
cout << "impossible" << endl;
else
cout << t << endl;
return 0;
}
posted on 2024-10-24 11:52 Minyou0713 阅读(5) 评论(0) 编辑 收藏 举报