Gym 100851 Distance on Triangulation

题意:给你一个N边形, 然后这个n边形有n-3条边,然后询问2点之间的最短路。

题解:分治。

我们可以找到一条边,使得这幅图能分成大小相同的2幅图,那么我们就可以确定那些被分割开的询问的答案是多少了。

我们假定u v是分开的, 然后我们从u点bfs一遍现在的图,v点bfs一遍现在的图,确定所有点离这2个点的位置,对于切断的询问更新答案。

需要注意的就是,每次都一定要重新建图,免得遍历太多的没有用的边。

递归结束的时候是这幅图只有3个点了,如果在3个点中的最短路,那么一定是1,假定2点不重合。

代码1:离线写法

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("distance.in","r",stdin); freopen("distance.out","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL mod =  (int)1e9+7;
const int N = 1e5 + 100;
struct Node{
    int u, v, id;
};
vector<int> vc[N][2], ee[N];
vector<pll> e[N][2];
vector<Node> q[N][2];
int ans[N], pos[N], num[N];
int lf[N], rt[N], ok[N];
int d[N][2];
queue<int> que;
void bfs(int b, int id){
    d[b][id] = 0;
    que.push(b);
    while(!que.empty()){
        int u = que.front();
        que.pop();
        for(auto v : ee[u]){
            if(d[v][id] > d[u][id]+1){
                d[v][id] = d[u][id]+1;
                que.push(v);
            }
        }
    }
}
void solve(int k, int op){
    if(vc[k][op].size() <= 3 || q[k][op].size() == 0) return ;
    int nodes = vc[k][op].size();
    for(int i = 0; i < nodes; ++i){
        ee[i].clear();
        pos[vc[k][op][i]] = i;
        d[i][0] = d[i][1] = inf;
        ee[i].pb((i+1)%nodes);
        ee[i].pb((i-1+nodes)%nodes);
    }
    int Max = inf, id = 0;
    for(int i = 0; i < e[k][op].size(); ++i){
        int u = e[k][op][i].fi, v = e[k][op][i].se;
        int tmp = max(pos[v]-pos[u], nodes - pos[v]+pos[u]);
        if(tmp < Max) {
            Max = tmp;
            id = i;
        }
        ee[pos[u]].pb( pos[v]);
        ee[pos[v]].pb( pos[u]);
    }
    vc[k+1][0].clear(); vc[k+1][1].clear();
    q[k+1][1].clear(); q[k+1][0].clear();
    e[k+1][0].clear(); e[k+1][1].clear();
    int tu = e[k][op][id].fi, tv = e[k][op][id].se;
    for(int i = 0; i < nodes; ++i){
        if(vc[k][op][i] == tu || vc[k][op][i] == tv){
            vc[k+1][0].pb(vc[k][op][i]);
            vc[k+1][1].pb(vc[k][op][i]);
        }
        else if(vc[k][op][i] < tu || vc[k][op][i] > tv)
            vc[k+1][0].pb(vc[k][op][i]), lf[vc[k][op][i]] = 1;
        else
            vc[k+1][1].pb(vc[k][op][i]), rt[vc[k][op][i]] = 1;
    }
    bfs(pos[tu], 0);
    bfs(pos[tv], 1);
    for(int i = 0, u, v; i < e[k][op].size(); ++i){
        u = e[k][op][i].fi, v = e[k][op][i].se;
        if(lf[u] || lf[v]) e[k+1][0].pb(e[k][op][i]);
        else if(rt[u] || rt[v]) e[k+1][1].pb(e[k][op][i]);
    }
    for(int i = 0, u, v, aid; i < q[k][op].size(); ++i){
        u = q[k][op][i].u, v = q[k][op][i].v, aid = q[k][op][i].id;
        if(lf[u] && lf[v]) {
            q[k+1][0].pb(q[k][op][i]);
            continue;
        }
        else if(rt[u] && rt[v]){
            q[k+1][1].pb(q[k][op][i]);
            continue;
        }
        u = pos[u], v = pos[v];
        ans[aid] = min(d[u][1]+d[v][1], d[u][0] + d[v][0]);
    }
    for(auto v : vc[k][op]){
        lf[v] = rt[v] = 0;
        ok[v] = 0;
    }
    solve(k+1, 0);
    solve(k+1, 1);
}
int main(){
    Fopen;
    int n, m, u, v;
    scanf("%d", &n);
    for(int i = 1; i <= n; ++i){
        vc[0][0].pb(i);
    }
    for(int i = 1; i <= n - 3; ++i){
        scanf("%d%d", &u, &v);
        if(u > v) swap(u,v);
        e[0][0].pb({u,v});
    }
    scanf("%d", &m);
    for(int i = 1; i <= m; ++i){
        scanf("%d%d", &u, &v);
        if(u > v) swap(u,v);
        if(u == v)
            continue;
        q[0][0].pb({u,v,i});
    }
    solve(0,0);
    for(int i = 1; i <= m; ++i){
        printf("%d\n", ans[i]);
    }
    return 0;
}
View Code

离线看着麻烦 其实还是挺简单的。

代码2:在线写法

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("distance.in","r",stdin); freopen("distance.out","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL mod =  (int)1e9+7;
const int N = 5e4+100;
vector<int> ee[N];
int pos[N], que[N];
struct Node{
    vector<int> v, d[2];
    vector<pll> e;
    int mn, mx, nodes;
    Node * lson, * rson;
    void bfs(int b,int id){
        d[id][b] = 0;
        int l = 0, r = 1;
        que[l] = b;
        while(l < r){
            int u = que[l++];
            for(auto v : ee[u]){
                if(d[id][v] > d[id][u]+1){
                    d[id][v] = d[id][u]+1;
                    que[r++] = v;
                }
            }
        }
    }
    void solve(){
        nodes = v.size();
        if(nodes <= 3) return ;
        for(int i = 0; i < nodes; ++i){
            pos[v[i]] = i;
            d[0].pb(inf); d[1].pb(inf);
            ee[i].clear();
            ee[i].pb((i+1)%nodes);
            ee[i].pb((i+nodes-1)%nodes);
        }
        int Max = inf, id = 0;
        for(int i = 0; i < nodes-3; ++i){\
            int x = pos[e[i].fi], y = pos[e[i].se];
            int tmp = max(y-x, nodes-(y-x));
            if(tmp < Max) {
                Max = tmp;
                id = i;
            }
            ee[x].pb(y);
            ee[y].pb(x);
        }
        mn = e[id].fi, mx = e[id].se;
        lson = new Node; rson = new Node;
        for(int i = 0; i < nodes; ++i){
            if(v[i] >= mn && v[i] <= mx) lson -> v.pb(v[i]);
            if(v[i] <= mn || v[i] >= mx) rson -> v.pb(v[i]);
        }
        bfs(pos[mn], 0);
        bfs(pos[mx], 1);
        for(int i = 0; i < nodes-3; ++i){
            int x = e[i].fi, y = e[i].se;
            if((x > mn && x < mx) || (y > mn && y < mx)) lson -> e.pb(e[i]);
            if(x < mn || y < mn || x > mx || y > mx) rson -> e.pb(e[i]);
        }
        lson -> solve();
        rson -> solve();
    }
    int Query(int x, int y){
        if(nodes <= 3) return 1;
        if((x > mn && x < mx) && (y > mn && y < mx)) return lson -> Query(x,y);
        if((x < mn || x > mx) && (y < mn || y > mx)) return rson -> Query(x,y);
        x = lower_bound(v.begin(), v.end(), x) - v.begin();
        y = lower_bound(v.begin(), v.end(), y) - v.begin();
        return min(d[0][x]+d[0][y], d[1][x]+d[1][y]);
    }
}rt;

int main(){
    Fopen;
    int n, m, u, v;
    scanf("%d", &n);
    for(int i = 1; i <= n; ++i){
        rt.v.pb(i);
    }
    for(int i = 1; i <= n - 3; ++i){
        scanf("%d%d", &u, &v);
        if(u > v) swap(u,v);
        rt.e.pb({u,v});
    }
    rt.solve();
    scanf("%d", &m);
    while(m--){
        scanf("%d%d", &u, &v);
        int ans = 0;
        if(u != v) ans = rt.Query(u,v);
        printf("%d\n", ans);
    }
    return 0;
}
View Code

在线写法要确定询问的点是不是都在一副新的图上,是就继续往下递归,否就在这个地方询问。

这题目中在线比离线的慢一点点。

因为在线写法的询问是严格的lg(n)是一个固定值,因为每次往下走,你就会使得二分的长度/2,就相当于是二分了一次了。。。。。

 

然后我又写了一个bug,疯狂TLE,惊了。

int Max = inf, id = 0;
    for(int i = 0; i < e[k][op].size(); ++i){
        int u = e[k][op][i].fi, v = e[k][op][i].se;
        int tmp = max(pos[v]-pos[u], nodes - pos[v]+pos[u]);
        if(tmp < Max) {
           tmp = Max; 
            id = i;
        }
        ee[pos[u]].pb( pos[v]);
        ee[pos[v]].pb( pos[u]);
}  

看着没什么问题。。。实际上问题大了。

应该是 Max = tmp。。。 这样加多了递归的层数,然后会加多存的东西,会导致TLE和MLE。

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("distance.in","r",stdin); freopen("distance.out","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL mod =  (int)1e9+7;
const int N = 1e5 + 100;
struct Node{
    int u, v, id;
};
vector<int> vc[N][2], ee[N];
vector<pll> e[N][2];
vector<Node> q[N][2];
int ans[N], pos[N], num[N];
int lf[N], rt[N], ok[N];
int d[N][2];
queue<int> que;
void bfs(int b, int id){
    d[b][id] = 0;
    que.push(b);
    while(!que.empty()){
        int u = que.front();
        que.pop();
        for(auto v : ee[u]){
            if(ok[v] && d[v][id] > d[u][id]+1){
                d[v][id] = d[u][id]+1;
                que.push(v);
            }
        }
    }
}
void solve(int k, int op){
    if(vc[k][op].size() <= 3 || q[k][op].size() == 0) return ;
    for(int i = 0; i < vc[k][op].size(); ++i){
        pos[vc[k][op][i]] = i;
        d[vc[k][op][i]][0] = d[vc[k][op][i]][1] = inf;
        ok[vc[k][op][i]] = 1;
    }
    int Max = inf, id = 0, totnum = vc[k][op].size();
    for(int i = 0; i < e[k][op].size(); ++i){
        int u = e[k][op][i].fi, v = e[k][op][i].se;
        int tmp = max(pos[v]-pos[u]-1, totnum - (pos[v]-pos[u]-1) - 2);
        if(tmp < Max) {
            tmp = Max;
            id = i;
        }
    }
    vc[k+1][0].clear(); vc[k+1][1].clear();
    vc[k+1][0].shrink_to_fit(); vc[k+1][1].shrink_to_fit();
    q[k+1][1].clear(); q[k+1][0].clear();
    q[k+1][1].shrink_to_fit(); q[k+1][0].shrink_to_fit();
    e[k+1][0].clear();e[k+1][1].clear();
    e[k+1][0].shrink_to_fit(); e[k+1][1].shrink_to_fit();
    int tu = e[k][op][id].fi, tv = e[k][op][id].se;
    for(int i = 0; i < totnum; ++i){
        if(vc[k][op][i] == tu || vc[k][op][i] == tv){
            vc[k+1][0].pb(vc[k][op][i]);
            vc[k+1][1].pb(vc[k][op][i]);
        }
        else if(vc[k][op][i] < tu || vc[k][op][i] > tv)
            vc[k+1][0].pb(vc[k][op][i]), lf[vc[k][op][i]] = 1;
        else
            vc[k+1][1].pb(vc[k][op][i]), rt[vc[k][op][i]] = 1;
    }
    bfs(tu,0);
    bfs(tv,1);
    for(int i = 0, u, v; i < e[k][op].size(); ++i){
        u = e[k][op][i].fi, v = e[k][op][i].se;
        if(lf[u] || lf[v]) e[k+1][0].pb(e[k][op][i]);
        else if(rt[u] || rt[v]) e[k+1][1].pb(e[k][op][i]);
    }
    for(int i = 0, u, v, aid; i < q[k][op].size(); ++i){
        u = q[k][op][i].u, v = q[k][op][i].v, aid = q[k][op][i].id;
        if(lf[u] && lf[v]) {
            q[k+1][0].pb(q[k][op][i]);
            continue;
        }
        else if(rt[u] && rt[v]){
            q[k+1][1].pb(q[k][op][i]);
            continue;
        }
        ans[aid] = min(ans[aid], d[u][0]+d[v][0]);
        ans[aid] = min(ans[aid], d[u][1]+d[v][1]);
    }
    for(auto v : vc[k][op]){
        lf[v] = rt[v] = 0;
        ok[v] = 0;
    }
    vc[k][op].clear();
    vc[k][op].shrink_to_fit();
    e[k][op].clear();
    e[k][op].shrink_to_fit();
    q[k][op].clear();
    q[k][op].shrink_to_fit();
    solve(k+1, 0);
    solve(k+1, 1);
}
int main(){
    Fopen;
    int n, m, u, v;
    scanf("%d", &n);
    for(int i = 1; i < n; ++i){
        vc[0][0].pb(i);
        ee[i].pb(i+1);
        ee[i+1].pb(i);
    }
    vc[0][0].pb(n);
    ee[1].pb(n); ee[n].pb(1);
    for(int i = 1; i <= n - 3; ++i){
        scanf("%d%d", &u, &v);
        if(u > v) swap(u,v);
        e[0][0].pb({u,v});
        ee[u].pb(v);
        ee[v].pb(u);
    }
    scanf("%d", &m);
    memset(ans, inf, sizeof ans);
    for(int i = 1; i <= m; ++i){
        scanf("%d%d", &u, &v);
        if(u > v) swap(u,v);
        if(u == v) {
            ans[i] = 0;
            continue;
        }
        q[0][0].pb({u,v,i});
    }
    solve(0,0);
    for(int i = 1; i <= m; ++i){
        printf("%d\n", ans[i]);
    }
    return 0;
}
View Code

然后顶着这个破代码 各种乱写 各种MLE, 然后把每一层的东西不需要的那时候马上clear 和 清除空间, 然后就过了。

然后想改成在线的,改了半天改不动才发现了上面的那个问题。

posted @ 2018-11-21 16:30  Schenker  阅读(336)  评论(0编辑  收藏  举报