Gym 101470 题解

A:Banks

代码:

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL mod =  (int)1e9+7;
const int N = 1e5 + 100;
int v[N];
int ans = 0;
int l[N], r[N];
int main()
{
    freopen("A.in", "r", stdin);
    int n;
    scanf("%d", &n);
    for(int i = 1; i <= n; ++i) scanf("%d", &v[i]);
    for(int i = 1; i < n; ++i)  r[i] = i + 1;
    r[n] = 1;
    for(int i = 2; i <= n; ++i) l[i] = i - 1;
    l[1] = n;

    int tot = 0, now = 1;
    while(true){
        if(tot == n)    break;

        if(v[now] < 0){
            v[r[now]] += v[now];
            v[l[now]] += v[now];
            v[now] = -v[now];
            tot = 1, ans++;
        }
        else{
            tot++;
        }
        now = r[now];
    }

    printf("%d\n", ans);
    return 0;
}
View Code

 

B:Circle of digits

题意:有一个环形的字符串,现在让你把它切成n段,要求切了之后,所有的串的最大值最小。

题解:我们可以知道 这长度为m的字符串中 最大值的那个字符串长度一定是m = n/k(向上取整), 故答案一定是从环上的每个点出发,然后走m步的串中的一个。 然后我们对这些答案排序, 排完序之后,二分答案。 然后对于每次二分完答案,我们都去check答案, 每次都往从1号位置枚举起点,枚举到m就够了,因为从m+1的位置出发一定是前面的一段的一个过程了,就不需要继续枚举答案了。

然后现在有一个问题就是比较, 对于这个字符串来说, 我们hash之后比较字符串的大小, 先二分hash值,找到第一个能使得这段hash值不相同的地方,然后再比较这个位置的信息就好了。

代码:

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL mod =  (int)1e9+7;
const int N = 2e5 + 100;
ULL base = 131;
char s[N];
ULL Hash[N], Hash_val[N];
int n, m, k;
void init(){
    Hash[0] = 1;
    for(int i = 1; i < N; ++i)
        Hash[i] = Hash[i-1] * base;
    for(int i = 1; i <= 2*n; ++i)
        Hash_val[i] = Hash_val[i-1] * base + s[i] - '0';
}
ULL Get_Hash(int l, int r){
    return Hash_val[r] - Hash_val[l-1] * Hash[r-l+1];
}
int A[N];
bool cmp(int L1, int L2){
    int l = 1, r = m;
    while(l <= r){
        int mid = l+r >> 1;
        if(Get_Hash(L1, L1+mid-1) == Get_Hash(L2, L2+mid-1)) l = mid + 1;
        else r = mid - 1;
    }
    if(l > m) return false;
    return s[L1+l-1] < s[L2+l-1];
}
bool cmp2(int i, int j){
    return cmp(i, j);
}
bool check(int x){

    for(int i = 1; i <= m; ++i){
        int b = i;
        for(int j = 1; j <= k; ++j){
            if(cmp(x,b) == false) b = b + m;
            else b = b + m - 1;
        }
        if(b-i >= n) return true;
    }
    return false;
}
int main(){
    freopen("B.in","r",stdin);
    scanf("%d%d", &n, &k);
    m = (n+k-1)/k;
    scanf("%s", s+1);
    for(int i = n+1; i <= n*2; ++i) s[i] = s[i-n];
    s[2*n+1] = '\0';
    init();
    for(int i = 1; i <= n; i++)
        A[i] = i;
    sort(A+1, A+1+n, cmp2);
    int l = 1, r = n;
    while(l <= r){
        int mid = l+r >> 1;
        if(check(A[mid]) == false) l = mid + 1;
        else r = mid - 1;
    }
    for(int i = A[l]; i <= A[l]+m-1; ++i)
        printf("%c", s[i]);
    return 0;
}
View Code

 

 

C: UFO

题意: 现在有n×m的一个矩形,每个格子内都会有若干个正方体。 现在射k次激光,每次激光输入为 ( c x h)  c 是 方向 x是第几行/列, 然后射掉r个正方体, 射完之后正方体会掉下来, 现在问你射完k次激光之后,矩形内选出一个p*p的正方形, 这里面的最大的值是多少。

题解:

建立n+m棵线段树, 每次修改的时候 找到 [L,R]的这个区间内部中 >= h的的最左或者最右格子的位置是在哪里, 然后在2棵对应的树上修改对应的位置。

然后再进行下一次查询,从新的[L,R]区间中重新找。

然后再把矩形还原回来,再找到最大子矩形。

代码:

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL mod =  (int)1e9+7;
const int N = 1e6 + 100;
int n, m, r, k, P;
vector<int> vc[N];
vector<int> xtree[N];
vector<int> ytree[N];
vector<int> *p;
int op, g;
void build(int l, int r, int rt){
    if(l == r){
        if(op) (*p)[rt] = vc[g][l];
        else (*p)[rt] = vc[l][g];
        return ;
    }
    int m = l+r >> 1;
    build(lson); build(rson);
    (*p)[rt] = max((*p)[rt<<1], (*p)[rt<<1|1]);
}
int Lpos;
void FindL(int L, int l, int r, int rt, int h){
    if((*p)[rt] < h) return ;
    if(l == r) {
        Lpos = min(Lpos, l);
        return ;
    }
    int m = l+r >> 1;
    if(L <= l){
        if((*p)[rt<<1] >= h) FindL(L,lson,h);
        else FindL(L,rson,h);
    }
    else if(L > m) FindL(L,rson,h);
    else if(L <= m){
        if((*p)[rt<<1] >= h) FindL(L,lson,h);
        if((*p)[rt<<1|1] >= h) FindL(L,rson,h);
    }
}
int Rpos;
void FindR(int R, int l, int r, int rt, int h){
    if((*p)[rt] < h) return ;
    if(l == r){
        Rpos = max(Rpos, r);
        return ;
    }
    int m = l+r >> 1;
    if(R >= r){
        if((*p)[rt<<1|1] >= h) FindR(R,rson,h);
        else FindR(R,lson,h);
    }
    else if(R <= m) FindR(R,lson,h);
    else if(R > m){
        if((*p)[rt<<1|1] >= h) FindR(R,rson,h);
        if((*p)[rt<<1] >= h) FindR(R,lson,h);
    }
}
void Change(int L, int l, int r, int rt){
    if(l == r){
        (*p)[rt]--;
        return ;
    }
    int m = l+r >> 1;
    if(L <= m) Change(L,lson);
    else Change(L,rson);
    (*p)[rt] = max((*p)[rt<<1], (*p)[rt<<1|1]);
}
void boom(int l, int r, int rt){
    if(l == r){
        vc[g][l] = (*p)[rt];
        return ;
    }
    int m = l+r >> 1;
    boom(lson); boom(rson);
}
int main(){
    freopen("C.in","r",stdin);
    scanf("%d%d%d%d%d", &n, &m, &r, &k, &P);
    for(int i = 0; i <= n; ++i){
        vc[i].resize(m+10);
        xtree[i].resize((m+10)<<2);
    }
    for(int i = 1; i <= m; ++i)
        ytree[i].resize((n+10)<<2);
    for(int i = 1; i <= n; ++i)
        for(int j = 1; j <= m; ++j){
            scanf("%d", &vc[i][j]);
        }
    op = 1;
    for(int i = 1; i <= n; ++i){
        p = &xtree[i];
        g = i;
        build(1,m,1);
    }

    op = 0;
    for(int i = 1; i <= m; ++i){
        p = &ytree[i];
        g = i;
        build(1,n,1);
    }
    char op[3];
    int x, h;
    while(k--){
        scanf("%s", op);
        scanf("%d%d", &x, &h);
        if(op[0] == 'N') {
            int lst = 1;
            for(int i = 1; i <= r; i++){
                Lpos = inf;
                p = &ytree[x];
                FindL(lst, 1, n, 1, h);
                if(Lpos == inf) break;
                Change(Lpos, 1, n, 1);
                p = &xtree[Lpos];
                Change(x, 1, m, 1);
                lst = Lpos + 1;
                if(lst > n) break;
            }
        }
        else if(op[0] == 'W'){
            int lst = 1;
            for(int i = 1; i <= r; i++){
                Lpos = inf;
                p = &xtree[x];
                FindL(lst, 1, m, 1, h);
                if(Lpos == inf) break;
                Change(Lpos, 1, m, 1);
                p = &ytree[Lpos];
                Change(x, 1, n, 1);
                lst = Lpos + 1;
                if(lst > m) break;
            }
        }
        else if(op[0] == 'E'){
            int lst = m;
            for(int i = 1; i <= r; i++){
                Rpos = 0;
                p = &xtree[x];
                FindR(lst, 1, m, 1, h);
                if(Rpos == 0) break;
                Change(Rpos, 1, m, 1);
                p = &ytree[Rpos];
                Change(x, 1, n, 1);
                lst = Rpos - 1;
                if(lst < 1) break;
            }
        }
        else if(op[0] == 'S'){
            int lst = n;
            for(int i = 1; i <= r; i++){
                Rpos = 0;
                p = &ytree[x];
                FindR(lst, 1, n, 1, h);
                if(Rpos == 0) break;
                Change(Rpos, 1, n, 1);
                p = &xtree[Rpos];
                Change(x, 1, m, 1);
                lst = Rpos - 1;
                if(lst < 1) break;
            }
        }
    }
    for(int i = 1; i <= n; ++i){
        p = &xtree[i];
        g = i;
        boom(1,m,1);
    }
    for(int i = 1; i <= n; ++i)
        for(int j = 1; j <= m; ++j){
            vc[i][j] += vc[i][j-1];
            if(vc[i][j] >= mod) vc[i][j] -= mod;
        }
    int ans = 0;
    for(int j = 1; j <= m; ++j)
        for(int i = 1; i <= n; ++i){
            vc[i][j] += vc[i-1][j];
            if(vc[i][j] >= mod) vc[i][j] -= mod;
            if(i >= P && j >= P){
                int tmp = vc[i][j];
                tmp -= vc[i-P][j];
                tmp -= vc[i][j-P];
                tmp += vc[i-P][j-P];
                while(tmp < 0) tmp += mod;
                while(tmp >= mod) tmp -= mod;
                ans = max(tmp, ans);
            }
        }
    printf("%d\n", ans);
    return 0;
}
/*

4 8 2 6 2
1 1 1 1 1 1 1 1
1 2 3 1 1 1 3 1
1 2 1 1 3 1 1 1
1 1 1 1 1 1 1 2
N 2 2
W 2 2
W 2 3
E 2 1
S 4 1
S 7 1
*/
View Code

 

 

D:Frame

题意:现在有若干个 1 × k 的长方形条, 现在问能不能刚好对 n × m 的矩形的最外面一圈填满。

题解:check一下左上角的格子是竖着填还是横着填的就好了。

代码:

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("d.in","r",stdin);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL mod =  (int)1e9+7;
const int N = 1e5 + 100;
int n, m, x;
bool check1(int x){
    int mm = m - 1;
    mm %= x;
    if(mm > 1) return false;
    int nn = n % x;
    if(nn > 1) return false;
    int mmm;
    if(nn == 1) mmm = m;
    else mmm = m - 1;
    mmm %= x;
    if(mmm > 1) return false;
    int nnn = n - 2 + mm + mmm;
    nnn %= x;
    if(nnn) return false;
    return true;
}
bool check2(int x){
    int mm = m;
    mm %= x;
    if(mm > 1) return false;
    int nn = n - 1;
    nn %= x;
    if(nn > 1) return false;
    int mmm = m - 1 + nn;
    mmm %= x;
    if(mmm > 1) return false;
    int nnn = n - 2 + mm + mmm;
    nnn %= x;
    if(nnn) return false;
    return true;

}
int main(){
    int T;
    Fopen;
    scanf("%d%d", &n, &m);
    scanf("%d", &T);
    while(T--){
        scanf("%d", &x);
        if(check1(x) || check2(x)) {
            puts("YES");
        }
        else puts("NO");
    }
    return 0;
}
View Code

 

E:Points

题意:现在2维平面上有若干个点,现在要求找到一个多边形,使得长度最小,并且所有的点都在矩形的内部,不包括边上。 多边形的边只能是格子的对角线或者是沿着格子的边。

题解:先找到一个最小矩形,能把所有点都包括在内部的矩形。 然后再从4个角考虑, 往里缩。

代码:

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("E.in","r",stdin);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL mod =  (int)1e9+7;
const int N = 1e5 + 100;
pll p[N];
int main(){
    Fopen;
    int n;
    int x1, y1, x2, y2;
    scanf("%d", &n);
    for(int i = 1; i <= n; ++i) {
        scanf("%d%d", &p[i].fi, &p[i].se);
        if(i == 1) x1 = x2 = p[i].fi, y2 = y1 = p[i].se;
        x1 = min(p[i].fi, x1); y1 = min(p[i].se, y1);
        x2 = max(p[i].fi, x2); y2 = max(p[i].se, y2);
    }
    x1--, y1--, x2++, y2++;
    LL ans = 2ll*(x2-x1 + y2-y1);
    LL cnt = 0;
    int maxx = x1, xx;
    for(int i = 1; i <= n; ++i){
        xx = p[i].fi - (p[i].se - y1);
        maxx = max(maxx, xx);
    }
    maxx++;
    ans -= (x2-maxx) * 2;
    cnt += x2-maxx;
    int minx = x2;
    for(int i = 1; i <= n; ++i){
        xx = p[i].fi + (p[i].se - y1);
        minx = min(minx, xx);
    }
    minx--;
    ans -= (minx-x1) * 2;
    cnt += minx-x1;
    maxx = x1;
    for(int i = 1; i <= n; ++i){
        xx = p[i].fi - (y2 - p[i].se);
        maxx = max(maxx, xx);
    }
    maxx++;
    ans -= (x2 - maxx) * 2;
    cnt += x2 - maxx;
    minx = x2;
    for(int i = 1; i <= n; ++i){
        xx = p[i].fi + (y2 - p[i].se);
        minx = min(minx, xx);
    }
    minx--;
    ans -= (minx - x1) * 2;
    cnt += minx - x1;
    //cout << cnt << endl;

    double tt = sqrt(2) * cnt + ans;
    printf("%f", tt);
    return 0;
}
View Code

 

F:Most Influential Pumpkin

题意:现在有一个长度为n的数组,现在有k次操作,给[l, r]这个区间里面的所有数+1, 现在问你每次操作之后的中位数大小是多少。

题解:

暴力分块。 修改的时候就对散的块暴力重构,整个块就打个lz标记。 

对于查询来说,我们最容易想到的就是2分套2分,然后找到答案。

但是这个复杂度实在太大,最终会T。

可以发现他每次只会对区间里面的数执行+操作,并且是+1。

所以我们可以发现每次中位数要么是上次修改之后的值,要么是比上次修改的值刚好大1。

这样我们最后每次操作的复杂度就是 (√n + √nlg√n + √nlg√n) 这样的复杂度就说的过去了。

代码:

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("F.in","r",stdin);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL mod =  (int)1e9+7;
const int N = 6e4 + 100;
int n, m, blo, num;
int a[N], b[N];
int l[N], r[N], lz[N];
void update(int x){
    for(int i = l[x]; i <= r[x]; ++i)
        b[i] = a[i];
    sort(b+l[x], b+r[x]+1);
}
void build(){
    blo = sqrt(n) + 1;
    num = n / blo;
    if(n%blo) num++;
    for(int i = 1; i <= num; i++){
        l[i] = blo * (i-1) + 1;
        r[i] = blo * i;
        lz[i] = 0;
    }
    r[num] = n;
    for(int i = 1; i <= num; i++)
        update(i);
}
void Add(int ll, int rr){
    int b1 = (ll + blo -1)/ blo;
    int b2 = (rr + blo -1)/ blo;
    for(int i = b1+1; i < b2; ++i)
        ++lz[i];
    if(b1 != b2){
        for(int i = ll; i <= r[b1]; ++i) ++a[i];
        update(b1);
        for(int i = l[b2]; i <= rr; ++i) ++a[i];
        update(b2);
    }
    else {
        for(int i = ll; i <= rr; ++i) ++a[i];
        update(b1);
    }
}
int boom(int x){
    int ret = 0;
    for(int i = 1; i <= num; ++i){
        int tmp = x - lz[i];
        int pos = upper_bound(b+l[i], b+r[i]+1, tmp) - b - l[i];
        ret += pos;
    }
    return ret;
}
int need = 0;
int mid;
int c[N];
int main(){
    Fopen;
    while(~scanf("%d%d", &n, &m) && n+m){
        need = n / 2 + 1;
        for(int i = 1; i <= n; ++i){
            scanf("%d", &a[i]);
            c[i] = a[i];
        }
        sort(c+1, c+1+n);
        mid = c[need];
        build();
        for(int i = 1,ll,rr; i <= m; ++i){
            scanf("%d%d",&ll,&rr);
            Add(ll,rr);
            if(boom(mid) < need) mid++;
            printf("%d\n", mid);
        }
    }
    return 0;
}
View Code

 

H:Triples

题解:

我们明白 a^j + b^j = c^j 当 a,b,c > 0 && j > 2上是无解的。

对于j==2的时候我们暴力求解。

然后对于j>3的时候 我们明白只有 a = 0, b = c 这种才合法,直接计算就好了。

代码:

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("H.in","r",stdin);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL mod =  (int)1e9+7;
const int N = 1e5 + 100;
int main(){
    int ans = 0;
    int n, m;
    Fopen;
    scanf("%d%d", &m, &n);
    //n = n*n*n;
    for(int i = 0; i <= m; ++i)
        for(int j = i; j <= m; ++j)
            for(int k = j; k <= m; ++k){
                if(i*i+j*j == k*k) ans++;
            }
    //int cnt = 0;

    ans += (m+1) * (n-2);
    printf("%d\n", ans);
    return 0;
}
View Code

 

J:Strange Antennas

题意:求被辐射的点。

题解:维护每行来说点的变数, 就是维护出对于每个位置来说,哪一列会对他产生影响,哪一列会消除影响。

代码:

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL mod =  (int)1e9+7;
const int N = 3e4 + 100;
vector<int> vc[N];
int n, m;
int vis[N];
inline bool check(int x, int y){
    if(x < 1 || y < 1 || x > n || y > n) return false;
    return true;
}
int main(){
    freopen("J.in","r",stdin);
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= m; ++i){
        int x, y, r, op;
        scanf("%d%d%d%d", &x, &y, &r, &op);
        if(op == 1){
            for(int i = 0; i < r; ++i){
                if(check(x+1,y+1+i)){
                    vc[x+1].pb(y+1+i);
                }
            }
            x = x + 2; y = y + r;
            while(r--){
                if(check(x,y)) vc[x].pb(y);
                ++x; --y;
            }
        }
        else if(op == 0){
            ++x;
            for(int i = 0; i < r; ++i){
                if(check(x,y-i)) vc[x].pb(y-i);
            }
            x++,  y = y - r + 1;
            while(r--){
                if(check(x,y)) vc[x].pb(y);
                ++x;++y;
            }
        }
        else if(op == 2){
            ++y;
            for(int i = 0; i < r; ++i)
                if(check(x+1,y+i)) vc[x+1].pb(y+i);
            x = x - r + 1;
            while(r--){
                if(check(x,y)) vc[x].pb(y);
                else if(check(1,y)) vc[1].pb(y);
                ++x;++y;
            }
        }
        else if(op == 3){
            for(int i = 0; i < r; ++i)
                if(check(x+1,y-i)) vc[x+1].pb(y-i);
            x = x - r + 1;
            while(r--){
                if(check(x,y)) vc[x].pb(y);
                else if(check(1,y)) vc[1].pb(y);
                x++, y--;
            }
        }
    }
    int ans = 0;
    int cnt = 0;
    for(int i = 1; i <= n; i++){
        for(auto y : vc[i]){
            vis[y] ^= 1;
            if(vis[y]) cnt++;
            else cnt--;
        }
        ans += cnt;
    }
    printf("%d\n", ans);
    return 0;
}
View Code

 

posted @ 2018-11-12 11:26  Schenker  阅读(330)  评论(0编辑  收藏  举报