Bzoj 2127 happiness 最小割
题解:
将图转换成最小割.
将割完的图中与S相连的点看做选文科, 与T相连的点看做选理科.
flow(s, u) = 文科值
flow(u,t) = 理科值
假设u 和 v 一起选文科有奖励值z, flow(s,u) = z/2 flow(s,v) = z/2, flow(u,v) = z/2
假设u 和 v 一起选理科有奖励值z, flow(u,t) = z/2 flow(v,t) = z/2, flow(u,v) = z/2
然后合并边.
具体理解可以画图看最小割之后的模型.
剩下的图才是价值.
#include<bits/stdc++.h> using namespace std; #define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout); #define LL long long #define ULL unsigned LL #define fi first #define se second #define pb push_back #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define lch(x) tr[x].son[0] #define rch(x) tr[x].son[1] #define max3(a,b,c) max(a,max(b,c)) #define min3(a,b,c) min(a,min(b,c)) typedef pair<int,int> pll; const int inf = 0x3f3f3f3f; const int _inf = 0xc0c0c0c0; const LL INF = 0x3f3f3f3f3f3f3f3f; const LL _INF = 0xc0c0c0c0c0c0c0c0; const LL mod = (int)1e9+7; int a[6][105][105]; int n, m; struct FFFlow{ const static int N = 105*105; static const int M = N << 3; int head[N], deep[N], cur[N]; int w[M], to[M], nx[M]; int tot; void add(int u, int v, int val){ w[tot] = val; to[tot] = v; nx[tot] = head[u]; head[u] = tot++; // w[tot] = 0; to[tot] = u; // nx[tot] = head[v]; head[v] = tot++; } void Eadd(int u, int v, int val, int p){ add(u, v, val); add(v, u, val * p); } int bfs(int s, int t){ queue<int> q; memset(deep, 0, sizeof(deep)); q.push(s); deep[s] = 1; while(!q.empty()){ int u = q.front(); q.pop(); for(int i = head[u]; ~i; i = nx[i]){ if(w[i] > 0 && deep[to[i]] == 0){ deep[to[i]] = deep[u] + 1; q.push(to[i]); } } } return deep[t] > 0; } int Dfs(int u, int t, int flow){ if(u == t) return flow; for(int &i = cur[u]; ~i; i = nx[i]){ if(deep[u]+1 == deep[to[i]] && w[i] > 0){ int di = Dfs(to[i], t, min(w[i], flow)); if(di > 0){ w[i] -= di, w[i^1] += di; return di; } } } return 0; } int Dinic(int s, int t){ int ans = 0, tmp; while(bfs(s, t)){ for(int i = 0; i <= t; i++) cur[i] = head[i]; while(tmp = Dfs(s, t, inf)) ans += tmp; } return ans; } void init(){ memset(head, -1, sizeof(head)); tot = 0; } }Flow; int main(){ Flow.init(); scanf("%d%d", &n, &m); int ans = 0; for(int k = 0; k < 6; ++k){ int x = n, y = m; if(k == 2 || k == 3) --x; if(k == 5 || k == 4) --y; for(int i = 1; i <= x; ++i) for(int j = 1; j <= y; ++j){ scanf("%d", &a[k][i][j]); ans += a[k][i][j]; } } int s = 0, t = n * m + 1; for(int i = 1; i <= n; ++i){ for(int j = 1; j <= m; ++j){ Flow.Eadd(s, (i-1)*m + j, a[0][i][j] * 2 + a[2][i-1][j] + a[2][i][j] + a[4][i][j-1] + a[4][i][j], 0); Flow.Eadd((i-1)*m + j, t, a[1][i][j] * 2 + a[3][i-1][j] + a[3][i][j] + a[5][i][j-1] + a[5][i][j], 0); if(i > 1) Flow.Eadd((i-1)*m+j, (i-2)*m+j, a[2][i-1][j] + a[3][i-1][j], 1); if(j > 1) Flow.Eadd((i-1)*m+j, (i-1)*m+j-1, a[4][i][j-1] + a[5][i][j-1], 1); } } ans -= Flow.Dinic(s, t) / 2; printf("%d\n", ans); return 0; }