五层网络协议串联

五层网络协议串联

2023-04-13 

0 五层协议体系结构


 

  1. 物理层
  2. 数据链路层 - MAC  - 本地地址(邮差)
  3. 网络层 - IP - 邮编(邮局)
  4. 传输层 - TCP, UDP - 收信人(管理员)
  5. 应用层 - HTTP - 收信人行业(用语规范)

 

 分层的说法。所有不能表示出层层封装含义的比喻,都是不恰当的。

1 物理层


 

所谓的物理层,是指光纤、电缆或者电磁波等真实存在的物理媒介。这些媒介可以传送物理信号,比如亮度、电压或者振幅。对于数字应用来说,我们只需要两种物理信号来分别表示0和1,比如用高电压表示1,低电压表示0,就构成了简单的物理层协议。针对某种媒介,电脑可以有相应的接口,用来接收物理信号,并解读成为0/1序列。

2 数据链路层


 

2.1 帧

我们在邮差与邮局中说到,以太网和WiFi是连接层的两种协议。在连接层,信息以帧(frame)为单位传输。帧像信封一样将数据(payload)包裹起来,并注明收信地址和送信地址。连接层实现了“本地社区”的通信。我们先来看看以太网的帧。

帧本身是一段有限的0/1序列。它可以分为头部数据(Payload)和尾部三部分:

  • Preamble: 序言是为了让接收设备调整接收频率,以便与发送设备的频率一致
  • DST:目的地(destination),MAC地址
  • SRC:发出地( source),MAC地址
  • Type:用以说明数据部分的类型。(比如0x0800为IPv4,0x0806为ARP)
  • Payload:数据一般包含有符合更高层协议的数据,比如IP包。连接层协议本身并不在乎数据是什么,它只负责传输。
  • FCS:校验序列(Frame Check Sequence)。校验序列是为了检验数据的传输是否发生错误。

2.2 集线器(Hub) vs. 交换器(Switch)

以太网使用集线器或者交换器将帧从发出地传送到目的地。一台集线器或交换器上有多个端口,每个端口都可以连接一台计算机(或其他设备)。

集线器像一个广播电台。一台电脑将帧发送到集线器,集线器会将帧转发到所有其他的端口。每台计算机检查自己的MAC地址是不是符合DST。如果不是,则保持沉默。集线器是比较早期的以太网设备。它有明显的缺陷:

  1. 任意两台电脑的通信在同一个以太网上是公开的。所有连接在同一个集线器上的设备都能收听到别人在传输什么,这样很不安全。可以通过对信息加密提高安全性。
  2. 不允许多路同时通信。如果两台电脑同时向集线器发信,集线器会向所有设备发出“冲突”信息,提醒发生冲突。可以在设备上增加冲突检测算法(collision detection):一旦设备发现有冲突,则随机等待一段时间再重新发送。

交换器克服集线器的缺陷。交换器记录有各个设备的MAC地址。当帧发送到交换器时,交换器会检查DST,然后将帧只发送到对应端口。交换器允许多路同时通信。由于交换器的优越性,交换器基本上取代了集线器。但比较老的以太网还有可能在使用集线器。

2.3 WiFi

WiFi的工作方式与集线器连接下的以太网类似。一个WiFi设备会向所有的WiFi设备发送帧,其它的WiFi设备检查自己是否符合DST。由于WiFi采取无线电信号,所以很难像交换器一样定向发送,所以WiFi的安全性很值得关注。WiFi采用加密的方法来实现信息的安全性。

3 网络层


 

3.1 IP包的格式

IP协议可以分为IPv4和IPv6两种。IPv6是改进版本,用于在未来取代IPv4协议。出于本文的目的,我们可以暂时忽略两者的区别,只以IPv4为例。下面是IPv4的格式

与帧类似,IP包的头部也有多个区域。我们将注意力放在红色的发出地(source address)和目的地(destination address)。它们都是IP地址。

3.2 网卡与路由器

IP地址实际上识别的是网卡(NIC, Network Interface Card)。网卡是计算机的一个硬件,它在接收到网路信息之后,将信息交给计算机(处理器/内存)。当计算机需要发送信息的时候,也要通过网卡发送。一台计算机可以有不只一个网卡,比如笔记本就有一个以太网卡和一个WiFi网卡。

路由器(router)实际上就是一台配备有多个网卡的专用电脑。它让网卡接入到不同的网络中,这样,就构成在邮差与邮局中所说的邮局。比如下图中位于中间位置的路由器有两个网卡,地址分别为199.165.145.17和199.165.146.3。它们分别接入到两个网络:199.165.145和199.165.146。

3.3 IP包接力

IP包的传输要通过路由器的接力。每一个主机和路由中都存有一个路由表(routing table)。路由表根据目的地的IP地址,规定了等待发送的IP包所应该走的路线。

3.4 ARP协议

ARP协议:(Address Resolution Protocol/地址解析协议)

在上面的过程中,我们实际上假设了,每一台主机和路由都能了解局域网内的IP地址和MAC地址的对应关系,这是实现IP包封装(encapsulation)到帧的基本条件。IP地址与MAC地址的对应是通过ARP协议传播到局域网的每个主机和路由。每一台主机或路由中都有一个ARP cache,用以存储局域网内IP地址和MAC地址如何对应。

ARP协议(ARP介于连接层和网络层之间,ARP包需要包裹在一个帧中)的工作方式如下:主机会发出一个ARP包,该ARP包中包含有自己的IP地址和MAC地址。通过ARP包,主机以广播的形式询问局域网上所有的主机和路由:我是IP地址xxxx,我的MAC地址是xxxx,有人知道199.165.146.4的MAC地址吗?拥有该IP地址的主机会回复发出请求的主机:哦,我知道,这个IP地址属于我的一个NIC,它的MAC地址是xxxxxx。由于发送ARP请求的主机采取的是广播形式,并附带有自己的IP地址和MAC地址,其他的主机和路由会同时检查自己的ARP cache,如果不符合,则更新自己的ARP cache。

 

3.5 Routing Table的生成

我们还有另一个假设,就是每个主机和路由上都已经有了合理的routing table。这个routint table描述了网络的拓扑(topology)结构。一个路由器可能有多个出口,所以routing table可能会很长。更重要的是,周围连接的其他路由器可能发生变动(比如新增路由器或者路由器坏掉),我们就需要routing table能及时将交通导向其他的出口。我们需要一种更加智能的探测周围的网络拓扑结构,并自动生成routing table。

RIP:一种用来生成routing table的协议是RIP(Routing Information Protocol)。它通过距离来决定routing table,所以属于distance-vector protocol。对于RIP来说,所谓的距离是从出发地到目的地途径的路由器数目(hop number)。

RIP出于技术上的原因(looping hops),认为距离超过15的IP不可到达。所以RIP更多用于互联网的一部分(比如整个中国电信的网络)。这样一个互联网的部分往往属于同一个ISP或者有同一个管理机构,所以叫做自治系统(AS,autonomous system)。自治系统内部的主机和路由根据通向外部的边界路由器来和其它的自治系统通信。各个边界路由器之间通过BGP(Border Gateway Protocol)来生成自己前往其它AS的routing table,而自治系统内部则参照边界路由器,使用RIP来决定routing table。BGP的基本工作过程与RIP类似,但在考虑距离的同时,也权衡比如政策、连接性能等其他因素,再决定交通的走向(routing table)。

3.6 ICMP协议

IP协议的一个重要补充是是ICMP协议。ICMP(Internet Control Message Protocol)是介于网络层和传输层的协议。它的主要功能是传输网络诊断信息。  ICMP协议是实现ping命令和traceroute命令的基础。这两个工具常用于网络排错。

ICMP传输的信息可以分为两类:

  • 一类是错误(error)信息,这一类信息可用来诊断网络故障。我们已经知道,IP协议的工作方式是“Best Effort”,如果IP包没有被传送到目的地,或者IP包发生错误,IP协议本身不会做进一步的努力。但上游发送IP包的主机和接力的路由器并不知道下游发生了错误和故障,它们可能继续发送IP包。通过ICMP包,下游的路由器和主机可以将错误信息汇报给上游,从而让上游的路由器和主机进行调整。需要注意的是,ICMP只提供特定类型的错误汇报,它不能帮助IP协议成为“可靠”(reliable)的协议。
  • 另一类信息是咨询(Informational)性质的,比如某台计算机询问路径上的每个路由器都是谁,然后各个路由器同样用ICMP包回答。

(ICMP基于IP协议。也就是说,一个ICMP包需要封装在IP包中,然后在互联网传送。ICMP是IP套装的必须部分,也就是说,任何一个支持IP协议的计算机,都要同时实现ICMP。)

ICMP包的结构:

ICMP包都会有Type, Code和Checksum三部分。 Checksum与IP协议的header checksum相类似,但与IP协议中checksum只校验头部不同,这里的Checksum所校验的是整个ICMP包(包括头部和数据)。

 

常见的ICMP包类型:
回音
回音(Echo)属于咨询信息。ping命令就是利用了该类型的ICMP包。当使用ping命令的时候,将向目标主机发送Echo-询问类型的ICMP包,而目标主机在接收到该ICMP包之后,会回复Echo-回答类型的ICMP包,并将询问ICMP包包含在数据部分。ping命令是我们进行网络排查的一个重要工具。如果一个IP地址可以通过ping命令收到回复,那么其他的网络协议通信方式也很有可能成功。 

源头冷却
源头冷却(source quench)属于错误信息。如果某个主机快速的向目的地传送数据,而目的地主机没有匹配的处理能力,目的地主机可以向出发主机发出该类型的ICMP包,提醒出发主机放慢发送速度(请温柔一点吧)。

目的地无法到达
目的地无法到达(Destination Unreachable)属于错误信息。如果一个路由器接收到一个没办法进一步接力的IP包,它会向出发主机发送该类型的ICMP包。比如当IP包到达最后一个路由器,路由器发现目的地主机down机,就会向出发主机发送目的地无法到达(Destination Unreachable)类型的ICMP包。目的地无法到达还可能有其他的原因,比如不存在接力路径,比如不被接收的端口号等等。 

超时
超时(Time Exceeded)属于错误信息。IPv4中的Time to Live(TTL)和IPv6中的Hop Limit会随着经过的路由器而递减,当这个区域值减为0时,就认为该IP包超时(Time Exceeded)。Time Exceeded就是TTL减为0时的路由器发给出发主机的ICMP包,通知它发生了超时错误。 

重新定向
重新定向(redirect)属于错误信息。当一个路由器收到一个IP包,对照其routing table,发现自己不应该收到该IP包,它会向出发主机发送重新定向类型的ICMP,提醒出发主机修改自己的routing table。

3.7 IPv4的分类和改进

传统的IP分类将IP地址直接对应为默认的分类,从而将Internet分割为网络。

CIDR(Classless Inter Domain Routing无类别域间路由)改进了传统的IPv4地址分类。CIDR在路由表中增加了子网掩码(subnet masking),从而可以更细分网络。利用CIDR,我们可以灵活的将某个范围的IP地址分配给某个网络。

示列:10.100.122.2/24
这个 IP 地址中有一个斜杠,斜杠后面有个数字 24。这种地址表示形式,就是 CIDR。后面 24 的意思是,32 位中,前 24 位是网络号,后 8 位是主机号。
CIDR在路由表中增加了子网掩码(subnet masking),从而可以更细分网络。子网掩码,255.255.255.0,将子网掩码和 IP 地址按位计算 AND,就可得到网络号,上述的网络号就是10.100.122.0

利用CIDR,我们可以将IP地址根据需要进行分割,从而不浪费IP地址。

NAT

CIDR虽然可以更加节约IP地址,但它并不能创造新的IP地址。IP地址的耗尽危机并不能因此得到解决。我们来看IPv4的第二袭,NAT(Network Address Translation)。

NAT是为私有网络(private network)服务的。该网络中的主机使用私有IP地址。当私有网络内部主机和外部Internet通信时,网关(gateway)路由器负责将私有IP地址转换为全球IP地址,这个地址转换过程就是Network Address Translation。网关路由器的NAT功能。最极端情况下,我们可以只分配一个全球IP地址给网关路由器,而私有网络中的设备都使用私有IP地址。由于私有IP地址可以在不同私有网络中重复使用,所以就大大减小了设备对IP地址的需求。

1) 基础NAT

NAT的一种为基础NAT,也成为一对一(one-to-one)NAT。在基础NAT下,网关路由器一一转换一个外部IP地址和一个私有IP地址。网关路由器保存有IP的NAT对应关系,比如:

上面网络中,当有IP包要前往199.165.145.1时,网关路由器会将目的地改写为10.0.0.1,并接力给私有网络中的10.0.0.1的电脑。同样,当10.0.0.1的电脑向Internet发送IP包时,它的发送地为10.0.0.1。在到达网关路由器时,会将发送地更改为199.165.145.1。此外,IP头部的checksum,以及更高层协议(比如UDPTCP)中的校验IP的checksum也会更改。

基础NAT尽管是一对一转换IP地址,它还是可以减小内部网络对IP地址的需求。通常来说,一个局域网中只有少数的设备处于开机状态,并不需要给每个设备对应一个全球IP地址。NAT可以动态的管理全球IP地址,并将全球IP地址对应到开机设备,从而减小内部网络对IP地址的需求。

2) NAPT

NAT还有一种,被成为NAPT (Network Address and Port Translation)。在基础NAT中,高层协议的端口号并不会改动。NAPT下,IP地址和端口号可能同时改动。

我们在UDPTCP中提到端口(port)的概念。在建立UDP或者TCP通信时,我们实际上是用IP:Port来代表通信的一端(正如打电话时主机:分机号一样)。NAPT就是在网关路由器处建立两个通信通道,一个通往内部网络,一个通往外部网络,然后将网关处的通道端口连接,从而让内部和外部通信。比如:

我们看到,通往IP 199.165.145.1建立了三个端口的连接:8888, 8889和8080。它们分别在NAPT处改为通往10.0.0.1:80, 10.0.0.1:8080和10.0.0.3:6000。NAPT记录有外部IP:端口和内部IP:端口的一一对应关系。在IP包经过时,网关路由器会更改IP地址,端口号以及相关的checksum。

利用NAPT我们可以使用一个(或者多个但少量的)外部IP和大量的端口号,来对应多个内部IP以及相应的端口号,从而大大减小了对全球IP地址的需求。

3.8 IP 手动和自动配置

手动配置

你可以用命令行自己配置一个地址。可以使用 ifconfig,也可以使用 ip addr。设置好了以后,用这两个命令,将网卡 up 一下,就可以开始工作了。

 使用 net-tools:

$ sudo ifconfig eth1 10.0.0.1/24
$ sudo ifconfig eth1 up 

  

动态配置

DHCP:动态主机配置协议(Dynamic Host Configuration Protocol) 。 

有了这个协议,网络管理员就轻松多了。他只需要配置一段共享的 IP 地址。每一台新接入的机器都通过 DHCP 协议,来这个共享的 IP 地址里申请,然后自动配置好就可以了。等人走了,或者用完了,还回去,这样其他的机器也能用。

当一台机器新加入一个网络的时候,肯定一脸懵,啥情况都不知道,只知道自己的 MAC 地址。怎么办?先吼一句,我来啦,有人吗?这时候的沟通基本靠“吼”。这一步,我们称为 DHCP Discover。

DHCP请求IP格式如下:

DHCP答复IP请求格式如下:

4 传输层


 

4.1 UDP

UDP(User Datagram Protocol)传输与IP传输非常类似。你可以将UDP协议看作IP协议暴露在传输层的一个接口。UDP协议同样以数据包(datagram)的方式传输,它的传输方式也是"Best Effort"的,所以UDP协议也是不可靠的(unreliable)。那么,我们为什么不直接使用IP协议而要额外增加一个UDP协议呢? 一个重要的原因是IP协议中并没有端口(port)的概念。

网络通信通过应用层->传输层(UDP/TCP)->网络层(IP)的封装方式

4.1.1 UDP协议的头部

 

上面的source portdestination port分别为UDP包的出发端口和目的地端口。Length为整个UDP包的长度。

checksum的算法与IP协议的header checksum算法相类似。然而,UDP的checksum所校验的序列包括了整个UDP数据包,以及封装的IP头部的一些信息(主要为出发地IP和目的地IP)。这样,checksum就可以校验IP:端口的正确性了。

4.2 TCP

TCP(Transportation Control Protocol)协议与IP协议是一同产生的。事实上,两者最初是一个协议,后来才被分拆成网络层的IP和传输层的TCP。我们已经在UDP协议中介绍过,UDP协议是IP协议在传输层的“傀儡”,用来实现数据包形式的通信。而TCP协议则实现了“”形式的通信。

4.2.1 TCP的2个特性及1个优化

顺序 - “ 流”通信

“流”的要点是次序(order)。TCP协议封装到IP包的不是整个文本流,而是TCP协议所规定的片段(segment),一个TCP片段同样分为头部(header)和数据(payload)两部分,TCP片段的头部(header)会存有该片段的序号(sequence number)

可靠性 - 确认,否则重发

IP协议是不可靠的,所以IP数据包可能在传输过程中发生错误或者丢失。而IP传输是"Best Effort" 式的,如果发生异常情况,我们的IP数据包就会被轻易的丢弃掉。另一方面,如果乱序(out-of-order)片段到达,根据我们上面说的,接收主机不会接收。这样,错误片段、丢失片段和被拒片段的联手破坏之下,接收主机只可能收到一个充满“漏洞”的文本流。

TCP的补救方法是,在每收到一个正确的、符合次序的片段之后,就向发送方(也就是连接的另一段)发送一个特殊的TCP片段,用来知会(ACK,acknowledge)发送方:我已经收到那个片段了。这个特殊的TCP片段叫做ACK回复。如果一个片段序号为L,对应ACK回复有回复号L+1,也就是接收方期待接收的下一个发送片段的序号。如果发送方在一定时间等待之后,还是没有收到ACK回复,那么它推断之前发送的片段一定发生了异常。发送方会重复发送(retransmit)那个出现异常的片段,等待ACK回复,如果还没有收到,那么再重复发送原片段... 直到收到该片段对应的ACK回复(回复号为L+1的ACK)。 

效率 - 滑窗

上面的工作方式中,发送方保持发送->等待ACK->发送->等待ACK...的单线工作方式,这样的工作方式叫做stop-and-wait。stop-and-wait虽然实现了TCP通信的可靠性,但同时牺牲了网络通信的效率。
滑窗(sliding window)被同时应用于接收方和发送方,以解决以上问题。发送方和接收方各有一个滑窗。当片段位于滑窗中时,表示TCP正在处理该片段。滑窗中可以有多个片段,也就是可以同时处理多个片段
4.2.2 TCP片段的头部格式

TCP片段分为头部和数据。数据部分为TCP真正传输的文本流数据。下面为TCP片段的头部格式:

 

 

4.2.3 TCP连接

网络层在逻辑上提供了端口的概念。一个IP地址可以有多个端口。一个具体的端口需要IP地址和端口号共同确定(我们记为IP:port的形式)。一个连接为两个IP:port之间建立TCP通信。(一个常用的比喻为:TCP连接就像两个人打电话, IP为总机号码,port为分机号码) 。每个连接有四个参数(两个IP,两个端口),如果这四个参数有一个不同,即为不同的连接。

TCP连接是双向(duplex)的。双向连接实际上就是建立两个方向的TCP传输,所以概念上并不复杂。这时,连接的每一方都需要两个滑窗,以分别处理发送的文本流和接收的文本流。由于连接的双向性,我们也要为两个方向的文本流编号。这两个文本流的编号相互独立。为文本流分段和编号由发送方来处理,回复ACK则由接收的一方进行。

  1. 一个TCP头部需要包含出发端口(source port)和目的地端口(destination port)。这些与IP头中的两个IP地址共同确定了连接。
  2. 每个TCP片段都有序号(sequence number)。这些序号最终将数据部分的文本片段整理成为文本流。
  3. ACK是一位(bit)。只有ACK位设定的时候,回复号(Acknowledgement number)才有效。ACK回复号说明了接收方期待接收的下一个片段,所以ACK回复号为最后接收到的片段序号加1。
    很多时候,ACK回复“附着”在发送的数据片段中。(ACK回复还可以“附着”在SYN片段和FIN片段)
  4. ACK后面还有SYN和FIN,它们也各占据一位(bit)。我将在后面说明这两位。

连接的建立

在TCP协议与"流"通信中讨论的TCP传输需要一个前提:TCP连接已经建立。然而,TCP连接从无到有需要一个建立连接的过程。建立连接的最重要目是让连接的双方交换初始序号(ISN, Initial Sequence Number)。根据TCP协议的规定,文本流的第一个片段的序号不能是确定的数字(比如说1)。连接的双方各自随机生成自己的ISN,然后再利用的一定方式让对方了解。这样的规定是出于TCP连接安全考虑:如果以一个确定的数字作为初始的TCP序号,那么其他人很容易猜出接下来的序列号,并按照正确的序号发送“伪装”的TCP片段,以插入到文本流中。

青色为纯粹的ACK片段。整个过程的本质是双方互发含有自己的ISN的SYN片段。根据TCP传输的规则,接收到ISN的一方需要回复ACK,所以共计四片信息在建立连接过程中传输。之所以是三次握手 (而不是四次),是因为server将发送SYN和回复ACK合并到一个TCP片段中。我们以client方为例。client知道自己的ISN(也就是ISN(c))。建立连接之后,它也知道了对方的ISN(s)。此后,如果需要发送文本流片段,则编号为ISN(c) + 1, ISN(c) + 2 ...。如果接收文本流片段,则期待接收ISN(s) + 1, ISN(s) + 2 ...。

连接建立之后,连接的双方就可以按照TCP传输的方式相互发送文本流了。

连接的正常终结

一个连接建立之后,连接两端的进程可以利用该连接进行通信。当连接的一方觉得“我讲完了”,它可以终结连接中发送到对方方向的通信。连接最终通过四次握手(four-way handshaking)的方式终结,连接终结使用的是特殊片段FIN(FIN位为1的片段)。

 

我们可以看到,连接终结的过程中,连接双方也交换了四片信息(两个FIN和两个ACK)。在终结连接的过程中,TCP并没有合并FIN与ACK片段。原因是TCP连接允许单向关闭(half-close)。也就是说,TCP连接关闭了一个方向的传输,成为一个单向连接(half-duplex)。第二个箭头和第三个箭头传递必须分开,才能有空隙在开放的方向上继续传输。如果第二个箭头和第三个箭头合并在一起,那么,随着一方关闭,另一方也要被迫关闭。

第二和第三次握手之间,server可以继续单向的发送片段给client,但client不能发送数据片段给server。(上面的终结从client先发起,TCP连接终结也可以从server先发起。)

在Client发送出最后的ACK回复,但该ACK可能丢失。Server如果没有收到ACK,将不断重复发送FIN片段。所以Client不能立即关闭,它必须确认Server接收到了该ACK。Client会在发送出ACK之后进入到TIME_WAIT状态。Client会设置一个计时器,等待2MSL的时间。如果在该时间内再次收到FIN,那么Client会重发ACK并再次等待2MSL。所谓的2MSL是两倍的MSL(Maximum Segment Lifetime)。MSL指一个片段在网络中最大的存活时间,2MSL就是一个发送和一个回复所需的最大时间。如果直到2MSL,Client都没有再次收到FIN,那么Client推断ACK已经被成功接收,则结束TCP连接。

 

参考

【1】协议森林

【2】趣谈网络协议

 

posted @ 2023-04-13 10:14  明-Ming  阅读(130)  评论(0编辑  收藏  举报