/*
DES, TripleDES and BlowFish in Silverlight
*/
namespace BroccoliProducts
{
using System;
using System.Collections.Generic;
#if DEBUG
using System.Diagnostics;
#endif // #if DEBUG
using System.Linq;
using System.Text;
using System.IO;
using System.Security.Cryptography;
/// <summary>
/// Declaration of DESCrytography class
/// </summary>
public static class DESCrytography
{
/////////////////////////////////////////////////////////////
// Nested classes
/// <summary>
/// Declaration of BLOCK8BYTE class
/// </summary>
internal class BLOCK8BYTE
{
/////////////////////////////////////////////////////////
// Constants
public const int BYTE_LENGTH = 8;
/////////////////////////////////////////////////////////
// Attributes
internal byte[] m_data = new byte[BYTE_LENGTH];
/////////////////////////////////////////////////////////
// Operations
public void Reset()
{
// Reset bytes
Array.Clear(m_data, 0, BYTE_LENGTH);
}
public void Set(BLOCK8BYTE Source)
{
// Copy source data to this
this.Set(Source.m_data,0);
}
public void Set(byte[] buffer, int iOffset)
{
// Set contents by copying array
Array.Copy(buffer, iOffset, m_data, 0, BYTE_LENGTH);
}
public void Xor(BLOCK8BYTE A, BLOCK8BYTE B)
{
// Set byte to A ^ B
for (int iOffset = 0; iOffset < BYTE_LENGTH; iOffset++)
m_data[iOffset] = Convert.ToByte( A.m_data[iOffset] ^ B.m_data[iOffset] );
}
public void SetBit(int iByteOffset, int iBitOffset, bool bFlag)
{
// Compose mask
byte mask = Convert.ToByte(1 << iBitOffset);
if (((m_data[iByteOffset] & mask) == mask) != bFlag)
m_data[iByteOffset] ^= mask;
}
public bool GetBit(int iByteOffset, int iBitOffset)
{
// call sibling function
return ((this.m_data[iByteOffset] >> iBitOffset) & 0x01) == 0x01;
}
public void ShiftLeftWrapped( BLOCK8BYTE S, int iBitShift )
{
// this shift is only applied to the first 32 bits, and parity bit is ignored
// Declaration of local variables
int iByteOffset = 0;
bool bBit = false;
// Copy byte and shift regardless
for (iByteOffset = 0; iByteOffset < 4; iByteOffset++)
m_data[iByteOffset] = Convert.ToByte((S.m_data[iByteOffset] << iBitShift) & 0xFF);
// if shifting by 1...
if (iBitShift == 1)
{
// repair bits on right of BYTE
for (iByteOffset = 0; iByteOffset < 3; iByteOffset++)
{
// get repairing bit offsets
bBit = S.GetBit( iByteOffset + 1, 7 );
this.SetBit(iByteOffset, 1, bBit);
}
// wrap around the final bit
this.SetBit(3,1,S.GetBit(0,7));
}
else if (iBitShift == 2)
{
// repair bits on right of BYTE
for (iByteOffset = 0; iByteOffset < 3; iByteOffset++)
{
// get repairing bit offsets
bBit = S.GetBit(iByteOffset + 1, 7);
this.SetBit(iByteOffset, 2, bBit);
bBit = S.GetBit(iByteOffset + 1, 6);
this.SetBit(iByteOffset, 1, bBit);
}
// wrap around the final bit
this.SetBit(3, 2, S.GetBit(0, 7));
this.SetBit(3, 1, S.GetBit(0, 6));
}
#if DEBUG
else
Debug.Assert(false);
#endif // #if DEBUG
}
}
/// <summary>
/// Declaration of KEY_SET class
/// </summary>
internal class KEY_SET
{
/////////////////////////////////////////////////////////
// Constants
public const int KEY_COUNT = 17;
/////////////////////////////////////////////////////////
// Attributes
internal BLOCK8BYTE[] m_array;
/////////////////////////////////////////////////////////
// Construction
internal KEY_SET()
{
// Create array
m_array = new BLOCK8BYTE[KEY_COUNT];
for (int i1 = 0; i1 < KEY_COUNT; i1++)
m_array[i1] = new BLOCK8BYTE();
}
/////////////////////////////////////////////////////////
// Operations
public BLOCK8BYTE GetAt(int iArrayOffset)
{
return m_array[iArrayOffset];
}
}
/// <summary>
/// Declaration of WORKING_SET class
/// </summary>
internal class WORKING_SET
{
/////////////////////////////////////////////////////////
// Attributes
internal BLOCK8BYTE IP = new BLOCK8BYTE();
internal BLOCK8BYTE[] Ln = new BLOCK8BYTE[17];
internal BLOCK8BYTE[] Rn = new BLOCK8BYTE[17];
internal BLOCK8BYTE RnExpand = new BLOCK8BYTE();
internal BLOCK8BYTE XorBlock = new BLOCK8BYTE();
internal BLOCK8BYTE SBoxValues = new BLOCK8BYTE();
internal BLOCK8BYTE f = new BLOCK8BYTE();
internal BLOCK8BYTE X = new BLOCK8BYTE();
internal BLOCK8BYTE DataBlockIn = new BLOCK8BYTE();
internal BLOCK8BYTE DataBlockOut = new BLOCK8BYTE();
internal BLOCK8BYTE DecryptXorBlock = new BLOCK8BYTE();
/////////////////////////////////////////////////////////
// Construction
internal WORKING_SET()
{
// Build the arrays
for (int i1 = 0; i1 < 17; i1++)
{
Ln[i1] = new BLOCK8BYTE();
Rn[i1] = new BLOCK8BYTE();
}
}
/////////////////////////////////////////////////////////
// Operations
internal void Scrub()
{
// Scrub data
IP.Reset();
for (int i1 = 0; i1 < 17; i1++)
{
Ln[i1].Reset();
Rn[i1].Reset();
}
RnExpand.Reset();
XorBlock.Reset();
SBoxValues.Reset();
f.Reset();
X.Reset();
DataBlockIn.Reset();
DataBlockOut.Reset();
DecryptXorBlock.Reset();
}
}
/////////////////////////////////////////////////////////////
// Constants
public const int KEY_BYTE_LENGTH = 8;
public const int BITS_PER_BYTE = 8;
/////////////////////////////////////////////////////////////
#region DES Tables
/* PERMUTED CHOICE 1 (PCl) */
private static byte[] bytePC1 = {
57, 49, 41, 33, 25, 17, 9,
1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27,
19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15,
7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29,
21, 13, 5, 28, 20, 12, 4,
};
/* PERMUTED CHOICE 2 (PC2) */
private static byte[] bytePC2 = {
14, 17, 11, 24, 1, 5,
3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8,
16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55,
30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53,
46, 42, 50, 36, 29, 32,
};
/* INITIAL PERMUTATION (IP) */
private static byte[] byteIP = {
58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6,
64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7
};
/* REVERSE FINAL PERMUTATION (IP-1) */
private static byte[] byteRFP = {
40, 8, 48, 16, 56, 24, 64, 32,
39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30,
37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28,
35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26,
33, 1, 41, 9, 49, 17, 57, 25,
};
/* E BIT-SELECTION TABLE */
private static byte[] byteE = {
32, 1, 2, 3, 4, 5,
4, 5, 6, 7, 8, 9,
8, 9, 10, 11, 12, 13,
12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21,
20, 21, 22, 23, 24, 25,
24, 25, 26, 27, 28, 29,
28, 29, 30, 31, 32, 1
};
/* PERMUTATION FUNCTION P */
private static byte[] byteP = {
16, 7, 20, 21,
29, 12, 28, 17,
1, 15, 23, 26,
5, 18, 31, 10,
2, 8, 24, 14,
32, 27, 3, 9,
19, 13, 30, 6,
22, 11, 4, 25
};
// Schedule of left shifts for C and D blocks
private static byte[] byteShifts = { 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 };
// S-Boxes
private static byte[,] byteSBox = new byte[,] {
{14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7},
{ 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8},
{ 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0},
{15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13},
{15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10},
{3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5},
{0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15},
{13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9},
{10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8},
{13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1},
{13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7},
{1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12},
{7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15},
{13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9},
{10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4},
{3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14},
{2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9},
{14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6},
{4, 2, 1, 11, 10, 13, 7, 8,15, 9, 12, 5, 6, 3, 0, 14},
{11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3},
{12, 1, 10, 15, 9, 2, 6, 8,0, 13, 3, 4, 14, 7, 5, 11},
{10, 15, 4, 2, 7, 12, 9, 5,6, 1, 13, 14, 0, 11, 3, 8},
{9, 14, 15, 5, 2, 8, 12, 3,7, 0, 4, 10, 1, 13, 11, 6},
{4, 3, 2, 12, 9, 5, 15, 10,11, 14, 1, 7, 6, 0, 8, 13},
{4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1},
{13, 0, 11, 7, 4, 9, 1, 10,14, 3, 5, 12, 2, 15, 8, 6},
{1, 4, 11, 13, 12, 3, 7, 14,10, 15, 6, 8, 0, 5, 9, 2},
{6, 11, 13, 8, 1, 4, 10, 7,9, 5, 0, 15, 14, 2, 3, 12},
{13, 2, 8, 4, 6, 15, 11, 1,10, 9, 3, 14, 5, 0, 12, 7},
{1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2},
{7, 11, 4, 1, 9, 12, 14, 2,0, 6, 10, 13, 15, 3, 5, 8},
{2, 1, 14, 7, 4, 10, 8, 13,15, 12, 9, 0, 3, 5, 6, 11}
};
#endregion DES Tables
/////////////////////////////////////////////////////////////
#region Static Operations - DES
public static bool IsValidDESKey(byte[] Key)
{
// Shortcuts
if (Key == null)
return false;
if (Key.Length != KEY_BYTE_LENGTH)
return false;
if (!IsStrongDESKey(Key))
return false;
// Make sure end bits have odd parity
for (int iByteOffset = 0; iByteOffset < KEY_BYTE_LENGTH; iByteOffset++)
{
// Add bits for this byte
int iTotalBits = 0;
byte Mask = 1;
for (int iBitOffset = 0; iBitOffset < BITS_PER_BYTE; iBitOffset++)
{
if ((Key[iByteOffset] & Mask) != 0)
iTotalBits++;
Mask <<= 1;
}
// If the total bits is not odd...
if ((iTotalBits % 2) != 1)
return false;
}
// Return success
return true;
}
public static bool IsStrongDESKey(byte[] Key)
{
// Compare by large integer
UInt64 uiKey = BitConverter.ToUInt64(Key,0);
// Find weak keys...
if(
(uiKey == 0x0000000000000000) ||
(uiKey == 0x00000000FFFFFFFF) ||
(uiKey == 0xE0E0E0E0F1F1F1F1) ||
(uiKey == 0x1F1F1F1F0E0E0E0E)
)
return false;
// Find semi-weak keys...
if(
(uiKey == 0x011F011F010E010E) ||
(uiKey == 0x1F011F010E010E01) ||
(uiKey == 0x01E001E001F101F1) ||
(uiKey == 0xE001E001F101F101) ||
(uiKey == 0x01FE01FE01FE01FE) ||
(uiKey == 0xFE01FE01FE01FE01) ||
(uiKey == 0x1FE01FE00EF10EF1) ||
(uiKey == 0xE01FE01FF10EF10E) ||
(uiKey == 0x1FFE1FFE0EFE0EFE) ||
(uiKey == 0xFE1FFE1FFE0EFE0E) ||
(uiKey == 0xE0FEE0FEF1FEF1FE) ||
(uiKey == 0xFEE0FEE0FEF1FEF1)
)
return false;
// Return success
return true;
}
public static byte[] CreateDesKey(Random rnd)
{
// Declare return variable
byte[] Ftmp = new byte[KEY_BYTE_LENGTH];
// Fill with random data
rnd.NextBytes(Ftmp);
// Make the key good
Ftmp = MakeGoodDesKey(Ftmp);
#if DEBUG
Debug.Assert(IsValidDESKey(Ftmp));
#endif // #if DEBUG
// Call sibling function
return Ftmp;
}
public static byte[] MakeGoodDesKey(byte[] KeyIn)
{
#if DEBUG
Debug.Assert(KeyIn != null);
Debug.Assert(KeyIn.Length == KEY_BYTE_LENGTH);
#endif // #if DEBUG
// Declare return variable
byte[] Ftmp = new byte[KEY_BYTE_LENGTH];
// Loop until key is good
int iInc = 0;
while (true)
{
// Start with the key data
Array.Copy(KeyIn, Ftmp, KEY_BYTE_LENGTH);
// Add the increment
_incKey(Ftmp, iInc);
// Make sure end bits have odd parity
_modifyKeyParity(Ftmp);
// If key is valid...
if (IsValidDESKey(Ftmp))
break;
// Move on
iInc++;
} // while-loop
// Return variable
return Ftmp;
}
public static void DES(byte[] bufferIn, ref byte[] bufferOut, byte[] Key, bool bEncrypt)
{
// Shortcuts
if (!IsValidDESKey(Key))
throw new Exception("Invalid DES key.");
// Create the output buffer
_createBufferOut(bufferIn.Length, ref bufferOut, bEncrypt);
// Expand the keys into Kn
KEY_SET[] Kn = new KEY_SET[1] {
_expandKey(Key, 0)
};
// Apply DES keys
_desAlgorithm(bufferIn, ref bufferOut, Kn, bEncrypt);
// If decrypting...
if (!bEncrypt)
_removePadding(ref bufferOut);
}
#endregion Static Operations - DES
/////////////////////////////////////////////////////////////
#region Static Operations - TripleDES
public static bool IsValidTripleDESKey(byte[] Key)
{
// Shortcuts
if (Key == null)
return false;
if (Key.Length != (3*KEY_BYTE_LENGTH))
return false;
// Check each part of the key
byte[] SubKey = new byte[KEY_BYTE_LENGTH];
for( int iKeyLoop=0; iKeyLoop<3; iKeyLoop++ )
{
// Get sub-key
Array.Copy( Key, iKeyLoop*8, SubKey, 0, KEY_BYTE_LENGTH );
// Check this DES key
if(!IsValidDESKey(SubKey))
return false;
}
// Keys must not be equal
bool bAEqualsB = true;
bool bAEqualsC = true;
bool bBEqualsC = true;
for (int iByteOffset = 0; iByteOffset < KEY_BYTE_LENGTH; iByteOffset++)
{
if (Key[iByteOffset] != Key[iByteOffset + KEY_BYTE_LENGTH])
bAEqualsB = false;
if (Key[iByteOffset] != Key[iByteOffset + KEY_BYTE_LENGTH + KEY_BYTE_LENGTH])
bAEqualsC = false;
if (Key[iByteOffset + KEY_BYTE_LENGTH] != Key[iByteOffset + KEY_BYTE_LENGTH + KEY_BYTE_LENGTH])
bBEqualsC = false;
}
if ((bAEqualsB) || (bAEqualsC) || (bBEqualsC))
return false;
// Return success
return true;
}
public static byte[] CreateTripleDesKey(Random rnd)
{
// Declare return variable
byte[] Ftmp = new byte[KEY_BYTE_LENGTH * 3];
// Fill with random data
rnd.NextBytes(Ftmp);
// Make the key good
Ftmp = MakeGoodTripleDesKey(Ftmp);
// Check key is valid
#if DEBUG
Debug.Assert(IsValidTripleDESKey(Ftmp));
#endif // #if DEBUG
// Call sibling function
return Ftmp;
}
public static byte[] MakeGoodTripleDesKey(byte[] KeyIn)
{
// Declare return variable
byte[] Ftmp = new byte[KEY_BYTE_LENGTH * 3];
// Declaration of local variables
int iKey = 0;
byte[] SubKey = new byte[KEY_BYTE_LENGTH];
// Loop through key modifications
int iInc = 0;
while (true)
{
// Start with the key
Array.Copy(KeyIn, Ftmp, KEY_BYTE_LENGTH * 3);
// Make sure each part of the key is valid
for (iKey = 0; iKey < 3; iKey++)
{
// Get the sub-key
Array.Copy(Ftmp, iKey * KEY_BYTE_LENGTH, SubKey, 0, KEY_BYTE_LENGTH);
// Increment sub-key
_incKey(SubKey, iInc * (iKey + 1));
// Make the parity valid
_modifyKeyParity(SubKey);
// Return to the Ftmp
Array.Copy(SubKey, 0, Ftmp, iKey * KEY_BYTE_LENGTH, KEY_BYTE_LENGTH);
}
// Check the key
if (IsValidTripleDESKey(Ftmp))
break;
// Move on
iInc++;
} // while-loop
// Return variable
return Ftmp;
}
public static void TripleDES(byte[] bufferIn, ref byte[] bufferOut, byte[] Key, bool bEncrypt)
{
// Shortcuts
if (!IsValidTripleDESKey(Key))
throw new Exception("Invalid DES key.");
// Create the output buffer
_createBufferOut(bufferIn.Length, ref bufferOut, bEncrypt);
// Expand the keys into Kn
KEY_SET[] Kn = new KEY_SET[3] {
_expandKey(Key, 0),
_expandKey(Key, 8),
_expandKey(Key, 16)
};
// Apply DES keys
_desAlgorithm(bufferIn, ref bufferOut, Kn, bEncrypt);
// If decrypting...
if (!bEncrypt)
_removePadding(ref bufferOut);
}
#endregion Static Operations - TripleDES
/////////////////////////////////////////////////////////////
#region Static Operations
private static void _incKey(byte[] Key, int iInc)
{
#if DEBUG
Debug.Assert(Key.Length == KEY_BYTE_LENGTH);
#endif // #if DEBUG
// shortcuts
if (iInc == 0)
return;
// Add the increment
int iCarry = iInc;
for (int iByteOffset = 0; iByteOffset < KEY_BYTE_LENGTH; iByteOffset++)
{
int iTemp = Key[iByteOffset] + iCarry;
iCarry = iTemp >> 8;
Key[iByteOffset] = Convert.ToByte(iTemp & 0xFF);
if (iCarry == 0)
break;
}
}
private static void _modifyKeyParity(byte[] Key)
{
#if DEBUG
Debug.Assert(Key.Length == KEY_BYTE_LENGTH);
#endif // #if DEBUG
// Make sure end bits have odd parity
for (int iByteOffset = 0; iByteOffset < KEY_BYTE_LENGTH; iByteOffset++)
{
// Add bits for this byte
int iTotalBits = 0;
byte Mask = 1;
for (int iBitOffset = 0; iBitOffset < BITS_PER_BYTE; iBitOffset++)
{
if ((Key[iByteOffset] & Mask) != 0)
iTotalBits++;
Mask <<= 1;
}
// If the total bits is not odd...
if ((iTotalBits % 2) != 1)
{
// Flip the first bit to retain odd parity
Key[iByteOffset] ^= 0x01;
}
}
}
private static KEY_SET _expandKey(byte[] Key, int iOffset)
{
//
// Expand an 8 byte DES key into a set of permuted keys
//
// Declare return variable
KEY_SET Ftmp = new KEY_SET();
// Declaration of local variables
int iTableOffset, iArrayOffset, iPermOffset, iByteOffset, iBitOffset;
bool bBit;
// Put key into an 8-bit block
BLOCK8BYTE K = new BLOCK8BYTE();
K.Set(Key, iOffset);
// Permutate Kp with PC1
BLOCK8BYTE Kp = new BLOCK8BYTE();
for (iArrayOffset = 0; iArrayOffset < bytePC1.Length; iArrayOffset++)
{
// Get permute offset
iPermOffset = bytePC1[iArrayOffset];
iPermOffset--;
// Get and set bit
Kp.SetBit(
_bitAddressToByteOffset(iArrayOffset, 7),
_bitAddressToBitOffset(iArrayOffset, 7),
K.GetBit(
_bitAddressToByteOffset(iPermOffset, 8),
_bitAddressToBitOffset(iPermOffset, 8)
)
);
}
// Create 17 blocks of C and D from Kp
BLOCK8BYTE[] KpCn = new BLOCK8BYTE[17];
BLOCK8BYTE[] KpDn = new BLOCK8BYTE[17];
for (iArrayOffset = 0; iArrayOffset < 17; iArrayOffset++)
{
KpCn[iArrayOffset] = new BLOCK8BYTE();
KpDn[iArrayOffset] = new BLOCK8BYTE();
}
for (iArrayOffset = 0; iArrayOffset < 32; iArrayOffset++)
{
// Set bit in KpCn
iByteOffset = _bitAddressToByteOffset(iArrayOffset, 8);
iBitOffset = _bitAddressToBitOffset(iArrayOffset, 8);
bBit = Kp.GetBit(iByteOffset, iBitOffset);
KpCn[0].SetBit(iByteOffset, iBitOffset, bBit);
// Set bit in KpDn
bBit = Kp.GetBit(iByteOffset + 4, iBitOffset);
KpDn[0].SetBit(iByteOffset, iBitOffset, bBit);
}
for (iArrayOffset = 1; iArrayOffset < 17; iArrayOffset++)
{
// Shift left wrapped
KpCn[iArrayOffset].ShiftLeftWrapped(KpCn[iArrayOffset - 1], byteShifts[iArrayOffset - 1]);
KpDn[iArrayOffset].ShiftLeftWrapped(KpDn[iArrayOffset - 1], byteShifts[iArrayOffset - 1]);
}
// Create 17 keys Kn
for (iArrayOffset = 0; iArrayOffset < 17; iArrayOffset++)
{
// Loop through the bits
for (iTableOffset = 0; iTableOffset < 48; iTableOffset++)
{
// Get address if bit
iPermOffset = bytePC2[iTableOffset];
iPermOffset--;
// Convert to byte and bit offsets
iByteOffset = _bitAddressToByteOffset(iPermOffset, 7);
iBitOffset = _bitAddressToBitOffset(iPermOffset, 7);
// Get bit
if (iByteOffset < 4)
bBit = KpCn[iArrayOffset].GetBit(iByteOffset, iBitOffset);
else
bBit = KpDn[iArrayOffset].GetBit(iByteOffset - 4, iBitOffset);
// Set bit
iByteOffset = _bitAddressToByteOffset(iTableOffset, 6);
iBitOffset = _bitAddressToBitOffset(iTableOffset, 6);
Ftmp.GetAt(iArrayOffset).SetBit(iByteOffset, iBitOffset, bBit);
}
}
// Return variable
return Ftmp;
}
private static void _createBufferOut( int iBufferInLength, ref byte[] bufferOut, bool bEncrypt )
{
//
// Create a buffer for the output, which may be trimmed later
//
// If encrypting...
int iOutputLength;
if (bEncrypt)
{
if ((iBufferInLength % KEY_BYTE_LENGTH) != 0)
iOutputLength = ((iBufferInLength / KEY_BYTE_LENGTH) + 1) * KEY_BYTE_LENGTH;
else
iOutputLength = iBufferInLength + KEY_BYTE_LENGTH;
}
else
{
if (iBufferInLength < 8)
throw new Exception("DES cypher-text must be at least 8 bytes.");
if ((iBufferInLength % 8) != 0)
throw new Exception("DES cypher-text must be a factor of 8 bytes in length.");
iOutputLength = iBufferInLength;
}
// Create buffer
if ((bufferOut == null) || (bufferOut.Length != iOutputLength))
bufferOut = new byte[iOutputLength];
else
Array.Clear(bufferOut, 0, bufferOut.Length);
}
private static void _removePadding(ref byte[] bufferOut)
{
//
// Remove the padding after decrypting
//
// Get the padding...
byte Padding = bufferOut[bufferOut.Length - 1];
if ((Padding == 0) || (Padding > 8))
throw new Exception("Invalid padding on DES data.");
// Confirm padding
bool bPaddingOk = true;
for (int iByteOffset = 1; iByteOffset < Padding; iByteOffset++)
{
if (bufferOut[bufferOut.Length - 1 - iByteOffset] != Padding)
{
bPaddingOk = false;
break;
}
}
if (bPaddingOk)
{
// Chop off the padding
Array.Resize(ref bufferOut, bufferOut.Length - Padding);
}
else
throw new Exception("Invalid padding on DES data.");
}
private static void _desAlgorithm(byte[] bufferIn, ref byte[] bufferOut, KEY_SET[] KeySets, bool bEncrypt)
{
//
// Apply the DES algorithm to each block
//
// Declare a workset set of variables
WORKING_SET workingSet = new WORKING_SET();
// encode/decode blocks
int iBufferPos = 0;
while (true)
{
// Check buffer position
if (bEncrypt)
{
// If end of buffer...
if (iBufferPos >= bufferOut.Length)
break;
// Calulate remaining bytes
int iRemainder = (bufferIn.Length - iBufferPos);
if (iRemainder >= 8)
workingSet.DataBlockIn.Set(bufferIn, iBufferPos);
else
{
// Copy part-block
workingSet.DataBlockIn.Reset();
if (iRemainder > 0)
Array.Copy(bufferIn, iBufferPos, workingSet.DataBlockIn.m_data, 0, iRemainder);
// Get the padding byte
byte Padding = Convert.ToByte(KEY_BYTE_LENGTH - iRemainder);
// Add padding to block
for (int iByteOffset = iRemainder; iByteOffset < KEY_BYTE_LENGTH; iByteOffset++)
workingSet.DataBlockIn.m_data[iByteOffset] = Padding;
}
}
else
{
// If end of buffer...
if (iBufferPos >= bufferIn.Length)
break;
// Get the next block
workingSet.DataBlockIn.Set(bufferIn, iBufferPos);
}
// if encrypting and not the first block...
if ((bEncrypt) && (iBufferPos > 0))
{
// Apply succession => XOR M with previous block
workingSet.DataBlockIn.Xor(workingSet.DataBlockOut, workingSet.DataBlockIn);
}
// Apply the algorithm
workingSet.DataBlockOut.Set(workingSet.DataBlockIn);
_lowLevel_desAlgorithm(workingSet, KeySets, bEncrypt);
// If decrypting...
if (!bEncrypt)
{
// Retain the succession
if (iBufferPos > 0)
workingSet.DataBlockOut.Xor(workingSet.DecryptXorBlock, workingSet.DataBlockOut);
// Retain the last block
workingSet.DecryptXorBlock.Set(workingSet.DataBlockIn);
}
// Update buffer out
Array.Copy(workingSet.DataBlockOut.m_data, 0, bufferOut, iBufferPos, 8);
// Move on
iBufferPos += 8;
}
// Scrub the working set
workingSet.Scrub();
}
private static void _lowLevel_desAlgorithm(WORKING_SET workingSet, KEY_SET[] KeySets, bool bEncrypt)
{
//
// Apply 1 or 3 keys to a block of data
//
// Declaration of local variables
int iTableOffset;
int iArrayOffset;
int iPermOffset;
int iByteOffset;
int iBitOffset;
// Loop through keys
for (int iKeySetOffset = 0; iKeySetOffset < KeySets.Length; iKeySetOffset++)
{
// Permute with byteIP
workingSet.IP.Reset();
for (iTableOffset = 0; iTableOffset < byteIP.Length; iTableOffset++)
{
// Get perm offset
iPermOffset = byteIP[iTableOffset];
iPermOffset--;
// Get and set bit
workingSet.IP.SetBit(
_bitAddressToByteOffset(iTableOffset, 8),
_bitAddressToBitOffset(iTableOffset, 8),
workingSet.DataBlockOut.GetBit(
_bitAddressToByteOffset(iPermOffset, 8),
_bitAddressToBitOffset(iPermOffset, 8)
)
);
}
// Create Ln[0] and Rn[0]
workingSet.Ln[0].Reset();
workingSet.Rn[0].Reset();
for (iArrayOffset = 0; iArrayOffset < 32; iArrayOffset++)
{
iByteOffset = _bitAddressToByteOffset(iArrayOffset, 8);
iBitOffset = _bitAddressToBitOffset(iArrayOffset, 8);
workingSet.Ln[0].SetBit(iByteOffset, iBitOffset, workingSet.IP.GetBit(iByteOffset, iBitOffset));
workingSet.Rn[0].SetBit(iByteOffset, iBitOffset, workingSet.IP.GetBit(iByteOffset + 4, iBitOffset));
}
// Loop through 17 interations
for (int iBlockOffset = 1; iBlockOffset < 17; iBlockOffset++)
{
// Get the array offset
int iKeyOffset;
if (bEncrypt != (iKeySetOffset == 1))
iKeyOffset = iBlockOffset;
else
iKeyOffset = 17 - iBlockOffset;
// Set Ln[N] = Rn[N-1]
workingSet.Ln[iBlockOffset].Set(workingSet.Rn[iBlockOffset - 1]);
// Set Rn[N] = Ln[0] + f(R[N-1],K[N])
for (iTableOffset = 0; iTableOffset < byteE.Length; iTableOffset++)
{
// Get perm offset
iPermOffset = byteE[iTableOffset];
iPermOffset--;
// Get and set bit
workingSet.RnExpand.SetBit(
_bitAddressToByteOffset(iTableOffset, 6),
_bitAddressToBitOffset(iTableOffset, 6),
workingSet.Rn[iBlockOffset - 1].GetBit(
_bitAddressToByteOffset(iPermOffset, 8),
_bitAddressToBitOffset(iPermOffset, 8)
)
);
}
// XOR expanded block with K-block
if (bEncrypt != (iKeySetOffset == 1))
workingSet.XorBlock.Xor(workingSet.RnExpand, KeySets[iKeySetOffset].GetAt(iKeyOffset));
else
workingSet.XorBlock.Xor(workingSet.RnExpand, KeySets[KeySets.Length - 1 - iKeySetOffset].GetAt(iKeyOffset));
// Set S-Box values
workingSet.SBoxValues.Reset();
for (iTableOffset = 0; iTableOffset < 8; iTableOffset++)
{
// Calculate m and n
int m = ((workingSet.XorBlock.GetBit(iTableOffset, 7) ? 1 : 0) << 1) | (workingSet.XorBlock.GetBit(iTableOffset, 2) ? 1 : 0);
int n = (workingSet.XorBlock.m_data[iTableOffset] >> 3) & 0x0F;
// Get s-box value
iPermOffset = byteSBox[(iTableOffset * 4) + m, n];
workingSet.SBoxValues.m_data[iTableOffset] = (byte)(iPermOffset << 4);
}
// Permute with P -> f
workingSet.f.Reset();
for (iTableOffset = 0; iTableOffset < byteP.Length; iTableOffset++)
{
// Get perm offset
iPermOffset = byteP[iTableOffset];
iPermOffset--;
// Get and set bit
workingSet.f.SetBit(
_bitAddressToByteOffset(iTableOffset, 4),
_bitAddressToBitOffset(iTableOffset, 4),
workingSet.SBoxValues.GetBit(
_bitAddressToByteOffset(iPermOffset, 4),
_bitAddressToBitOffset(iPermOffset, 4)
)
);
}
// Rn[N] = Ln[N-1] ^ f
workingSet.Rn[iBlockOffset].Reset();
for (iTableOffset = 0; iTableOffset < 8; iTableOffset++)
{
// Get Ln[N-1] -> A
byte A = workingSet.Ln[iBlockOffset - 1].m_data[(iTableOffset >> 1)];
if ((iTableOffset % 2) == 0)
A >>= 4;
else
A &= 0x0F;
// Get f -> B
byte B = Convert.ToByte(workingSet.f.m_data[iTableOffset] >> 4);
// Update Rn[N]
if ((iTableOffset % 2) == 0)
workingSet.Rn[iBlockOffset].m_data[iTableOffset >> 1] |= Convert.ToByte((A ^ B) << 4);
else
workingSet.Rn[iBlockOffset].m_data[iTableOffset >> 1] |= Convert.ToByte(A ^ B);
}
}
// X = R16 L16
workingSet.X.Reset();
for (iTableOffset = 0; iTableOffset < 4; iTableOffset++)
{
workingSet.X.m_data[iTableOffset] = workingSet.Rn[16].m_data[iTableOffset];
workingSet.X.m_data[iTableOffset + 4] = workingSet.Ln[16].m_data[iTableOffset];
}
// C = X perm IP
workingSet.DataBlockOut.Reset();
for (iTableOffset = 0; iTableOffset < byteRFP.Length; iTableOffset++)
{
// Get perm offset
iPermOffset = byteRFP[iTableOffset];
iPermOffset--;
// Get and set bit
workingSet.DataBlockOut.SetBit(
_bitAddressToByteOffset(iTableOffset, 8),
_bitAddressToBitOffset(iTableOffset, 8),
workingSet.X.GetBit(
_bitAddressToByteOffset(iPermOffset, 8),
_bitAddressToBitOffset(iPermOffset, 8)
)
);
}
} // key loop
}
#endregion Static Operations
/////////////////////////////////////////////////////////////
// Helper Operations
private static int _bitAddressToByteOffset(int iTableAddress, int iTableWidth)
{
int iFtmp = iTableAddress / iTableWidth;
return iFtmp;
}
private static int _bitAddressToBitOffset(int iTableAddress, int iTableWidth)
{
int iFtmp = BITS_PER_BYTE - 1 - (iTableAddress % iTableWidth);
return iFtmp;
}
/////////////////////////////////////////////////////////////
#region Debug Operations
#if DEBUG
#if !SILVERLIGHT
private static void MicrosoftDESEncrypt(byte[] bufferIn, ref byte[] bufferOut, byte[] Key, bool bEncrypt, bool bDESMode)
{
// Declaration of key and IV
byte[] bufferTemp = new byte[1024];
byte[] IV;
if(bDESMode)
IV = new byte[8];
else
IV = new byte[8*3];
// Declare a crypto object
ICryptoTransform crypto;
if (bDESMode)
{
DESCryptoServiceProvider des = new DESCryptoServiceProvider();
des.Padding = PaddingMode.PKCS7;
if (bEncrypt)
crypto = des.CreateEncryptor(Key, IV);
else
crypto = des.CreateDecryptor(Key, IV);
}
else
{
TripleDESCryptoServiceProvider tripleDes = new TripleDESCryptoServiceProvider();
tripleDes.Padding = PaddingMode.PKCS7;
if (bEncrypt)
crypto = tripleDes.CreateEncryptor(Key, IV);
else
crypto = tripleDes.CreateDecryptor(Key, IV);
}
// a memory stream for the cyrpto
using(MemoryStream ms = new MemoryStream())
{
// Create a CryptoStream using the memory stream
using (CryptoStream encStream = new CryptoStream(ms, crypto, CryptoStreamMode.Write))
{
// Encrypt/decrypt and flush
encStream.Write(bufferIn, 0, bufferIn.Length);
encStream.Flush();
encStream.FlushFinalBlock();
encStream.Close();
// Get the data into a buffer
bufferOut = ms.ToArray();
}
}
}
#endif // #if !SILVERLIGHT
#endif // #if DEBUG
#if DEBUG
#if !SILVERLIGHT
public static void _assertBufferMatch(byte[] A, byte[] B)
{
// Compare outputs
Debug.Assert(A.Length == B.Length);
for (int iOffset = 0; iOffset < A.Length; iOffset++)
Debug.Assert(A[iOffset] == B[iOffset]);
}
#endif // #if !SILVERLIGHT
#endif // #if DEBUG
#if DEBUG
#if !SILVERLIGHT
public static void Test()
{
//
// This function encrypts and encrypts data using our DES algorithm, and
// ensures the results are the same as the Microsoft algorithm with default padding settings.
//
// Declaration of local variables
Random rnd = new Random(1);
byte[] DesKey, Des3Key;
byte[] plainText = null, cypherText = null, plainText2 = null, msCypherText = null, msPlainText2 = null;
// Compare the DES algorithm with the Microsoft algorithm
for (int iTest = 0; iTest < 100*1000; iTest++)
{
// Dump progress
if ((iTest % 200) == 0)
Trace.TraceInformation("Test {0}", iTest);
// Generate test data
DesKey = DESCrytography.CreateDesKey(rnd);
Des3Key = DESCrytography.CreateTripleDesKey(rnd);
int iLength = rnd.Next(0, 256);
if ((plainText == null) || (plainText.Length != iLength))
plainText = new byte[iLength];
rnd.NextBytes(plainText);
// DES Test
{
// Encrypt using our algorithm
DESCrytography.DES(plainText, ref cypherText, DesKey, true);
// Decrypt using our algorithm
DESCrytography.DES(cypherText, ref plainText2, DesKey, false);
// Compare outputs
_assertBufferMatch(plainText,plainText2);
// Encrypt using Microsoft algorithm
MicrosoftDESEncrypt(plainText, ref msCypherText, DesKey, true, true);
// Decrypt using Microsoft algorithm
MicrosoftDESEncrypt(msCypherText, ref msPlainText2, DesKey, false, true);
// Compare outputs
_assertBufferMatch(plainText, msPlainText2);
// Make sure Microsoft and our algorithms are the same
_assertBufferMatch(cypherText, msCypherText);
}
// TripleDES Test
{
// Encrypt using our algorithm
DESCrytography.TripleDES(plainText, ref cypherText, Des3Key, true);
// Decrypt using our algorithm
DESCrytography.TripleDES(cypherText, ref plainText2, Des3Key, false);
// Compare outputs
_assertBufferMatch(plainText, plainText2);
// Encrypt using Microsoft algorithm
MicrosoftDESEncrypt(plainText, ref msCypherText, Des3Key, true, false);
// Decrypt using Microsoft algorithm
MicrosoftDESEncrypt(msCypherText, ref msPlainText2, Des3Key, false, false);
// Compare outputs
_assertBufferMatch(plainText, msPlainText2);
// Make sure Microsoft and our algorithms are the same
_assertBufferMatch(cypherText, msCypherText);
}
} // for-loop
}
#endif // #if !SILVERLIGHT
#endif // #if DEBUG
#endregion Debug Operations
}
}
namespace BroccoliProducts
{
using System;
using System.Collections.Generic;
#if DEBUG
using System.Diagnostics;
#endif // #if DEBUG
using System.IO;
using System.Linq;
using System.Runtime.InteropServices;
using System.Security.Cryptography;
using System.Text;
/// <summary>
/// Declaration of BlowFishCrytography class
/// </summary>
public static class BlowFishCrytography
{
/////////////////////////////////////////////////////////////
// Constants
public const int BLOWFISH_BLOCK_LENGTH = 8;
public const int MIN_KEY_BYTE_LENGTH = 4;
public const int MAX_KEY_BYTE_LENGTH = 56;
/////////////////////////////////////////////////////////////
#region BlowFish Tables
private const int PTABLE_LENGTH = 18;
private const int STABLE_LENGTH0 = 4;
private const int STABLE_LENGTH1 = 256;
private static uint[] BLOWFISH_PTABLE =
{
0x243f6a88, 0x85a308d3, 0x13198a2e, 0x03707344, 0xa4093822, 0x299f31d0,
0x082efa98, 0xec4e6c89, 0x452821e6, 0x38d01377, 0xbe5466cf, 0x34e90c6c,
0xc0ac29b7, 0xc97c50dd, 0x3f84d5b5, 0xb5470917, 0x9216d5d9, 0x8979fb1b
};
private static uint[] BLOWFISH_SBOX0 =
{
0xd1310ba6, 0x98dfb5ac, 0x2ffd72db, 0xd01adfb7, 0xb8e1afed, 0x6a267e96,
0xba7c9045, 0xf12c7f99, 0x24a19947, 0xb3916cf7, 0x0801f2e2, 0x858efc16,
0x636920d8, 0x71574e69, 0xa458fea3, 0xf4933d7e, 0x0d95748f, 0x728eb658,
0x718bcd58, 0x82154aee, 0x7b54a41d, 0xc25a59b5, 0x9c30d539, 0x2af26013,
0xc5d1b023, 0x286085f0, 0xca417918, 0xb8db38ef, 0x8e79dcb0, 0x603a180e,
0x6c9e0e8b, 0xb01e8a3e, 0xd71577c1, 0xbd314b27, 0x78af2fda, 0x55605c60,
0xe65525f3, 0xaa55ab94, 0x57489862, 0x63e81440, 0x55ca396a, 0x2aab10b6,
0xb4cc5c34, 0x1141e8ce, 0xa15486af, 0x7c72e993, 0xb3ee1411, 0x636fbc2a,
0x2ba9c55d, 0x741831f6, 0xce5c3e16, 0x9b87931e, 0xafd6ba33, 0x6c24cf5c,
0x7a325381, 0x28958677, 0x3b8f4898, 0x6b4bb9af, 0xc4bfe81b, 0x66282193,
0x61d809cc, 0xfb21a991, 0x487cac60, 0x5dec8032, 0xef845d5d, 0xe98575b1,
0xdc262302, 0xeb651b88, 0x23893e81, 0xd396acc5, 0x0f6d6ff3, 0x83f44239,
0x2e0b4482, 0xa4842004, 0x69c8f04a, 0x9e1f9b5e, 0x21c66842, 0xf6e96c9a,
0x670c9c61, 0xabd388f0, 0x6a51a0d2, 0xd8542f68, 0x960fa728, 0xab5133a3,
0x6eef0b6c, 0x137a3be4, 0xba3bf050, 0x7efb2a98, 0xa1f1651d, 0x39af0176,
0x66ca593e, 0x82430e88, 0x8cee8619, 0x456f9fb4, 0x7d84a5c3, 0x3b8b5ebe,
0xe06f75d8, 0x85c12073, 0x401a449f, 0x56c16aa6, 0x4ed3aa62, 0x363f7706,
0x1bfedf72, 0x429b023d, 0x37d0d724, 0xd00a1248, 0xdb0fead3, 0x49f1c09b,
0x075372c9, 0x80991b7b, 0x25d479d8, 0xf6e8def7, 0xe3fe501a, 0xb6794c3b,
0x976ce0bd, 0x04c006ba, 0xc1a94fb6, 0x409f60c4, 0x5e5c9ec2, 0x196a2463,
0x68fb6faf, 0x3e6c53b5, 0x1339b2eb, 0x3b52ec6f, 0x6dfc511f, 0x9b30952c,
0xcc814544, 0xaf5ebd09, 0xbee3d004, 0xde334afd, 0x660f2807, 0x192e4bb3,
0xc0cba857, 0x45c8740f, 0xd20b5f39, 0xb9d3fbdb, 0x5579c0bd, 0x1a60320a,
0xd6a100c6, 0x402c7279, 0x679f25fe, 0xfb1fa3cc, 0x8ea5e9f8, 0xdb3222f8,
0x3c7516df, 0xfd616b15, 0x2f501ec8, 0xad0552ab, 0x323db5fa, 0xfd238760,
0x53317b48, 0x3e00df82, 0x9e5c57bb, 0xca6f8ca0, 0x1a87562e, 0xdf1769db,
0xd542a8f6, 0x287effc3, 0xac6732c6, 0x8c4f5573, 0x695b27b0, 0xbbca58c8,
0xe1ffa35d, 0xb8f011a0, 0x10fa3d98, 0xfd2183b8, 0x4afcb56c, 0x2dd1d35b,
0x9a53e479, 0xb6f84565, 0xd28e49bc, 0x4bfb9790, 0xe1ddf2da, 0xa4cb7e33,
0x62fb1341, 0xcee4c6e8, 0xef20cada, 0x36774c01, 0xd07e9efe, 0x2bf11fb4,
0x95dbda4d, 0xae909198, 0xeaad8e71, 0x6b93d5a0, 0xd08ed1d0, 0xafc725e0,
0x8e3c5b2f, 0x8e7594b7, 0x8ff6e2fb, 0xf2122b64, 0x8888b812, 0x900df01c,
0x4fad5ea0, 0x688fc31c, 0xd1cff191, 0xb3a8c1ad, 0x2f2f2218, 0xbe0e1777,
0xea752dfe, 0x8b021fa1, 0xe5a0cc0f, 0xb56f74e8, 0x18acf3d6, 0xce89e299,
0xb4a84fe0, 0xfd13e0b7, 0x7cc43b81, 0xd2ada8d9, 0x165fa266, 0x80957705,
0x93cc7314, 0x211a1477, 0xe6ad2065, 0x77b5fa86, 0xc75442f5, 0xfb9d35cf,
0xebcdaf0c, 0x7b3e89a0, 0xd6411bd3, 0xae1e7e49, 0x00250e2d, 0x2071b35e,
0x226800bb, 0x57b8e0af, 0x2464369b, 0xf009b91e, 0x5563911d, 0x59dfa6aa,
0x78c14389, 0xd95a537f, 0x207d5ba2, 0x02e5b9c5, 0x83260376, 0x6295cfa9,
0x11c81968, 0x4e734a41, 0xb3472dca, 0x7b14a94a, 0x1b510052, 0x9a532915,
0xd60f573f, 0xbc9bc6e4, 0x2b60a476, 0x81e67400, 0x08ba6fb5, 0x571be91f,
0xf296ec6b, 0x2a0dd915, 0xb6636521, 0xe7b9f9b6, 0xff34052e, 0xc5855664,
0x53b02d5d, 0xa99f8fa1, 0x08ba4799, 0x6e85076a
};
private static uint[] BLOWFISH_SBOX1 =
{
0x4b7a70e9, 0xb5b32944, 0xdb75092e, 0xc4192623, 0xad6ea6b0, 0x49a7df7d,
0x9cee60b8, 0x8fedb266, 0xecaa8c71, 0x699a17ff, 0x5664526c, 0xc2b19ee1,
0x193602a5, 0x75094c29, 0xa0591340, 0xe4183a3e, 0x3f54989a, 0x5b429d65,
0x6b8fe4d6, 0x99f73fd6, 0xa1d29c07, 0xefe830f5, 0x4d2d38e6, 0xf0255dc1,
0x4cdd2086, 0x8470eb26, 0x6382e9c6, 0x021ecc5e, 0x09686b3f, 0x3ebaefc9,
0x3c971814, 0x6b6a70a1, 0x687f3584, 0x52a0e286, 0xb79c5305, 0xaa500737,
0x3e07841c, 0x7fdeae5c, 0x8e7d44ec, 0x5716f2b8, 0xb03ada37, 0xf0500c0d,
0xf01c1f04, 0x0200b3ff, 0xae0cf51a, 0x3cb574b2, 0x25837a58, 0xdc0921bd,
0xd19113f9, 0x7ca92ff6, 0x94324773, 0x22f54701, 0x3ae5e581, 0x37c2dadc,
0xc8b57634, 0x9af3dda7, 0xa9446146, 0x0fd0030e, 0xecc8c73e, 0xa4751e41,
0xe238cd99, 0x3bea0e2f, 0x3280bba1, 0x183eb331, 0x4e548b38, 0x4f6db908,
0x6f420d03, 0xf60a04bf, 0x2cb81290, 0x24977c79, 0x5679b072, 0xbcaf89af,
0xde9a771f, 0xd9930810, 0xb38bae12, 0xdccf3f2e, 0x5512721f, 0x2e6b7124,
0x501adde6, 0x9f84cd87, 0x7a584718, 0x7408da17, 0xbc9f9abc, 0xe94b7d8c,
0xec7aec3a, 0xdb851dfa, 0x63094366, 0xc464c3d2, 0xef1c1847, 0x3215d908,
0xdd433b37, 0x24c2ba16, 0x12a14d43, 0x2a65c451, 0x50940002, 0x133ae4dd,
0x71dff89e, 0x10314e55, 0x81ac77d6, 0x5f11199b, 0x043556f1, 0xd7a3c76b,
0x3c11183b, 0x5924a509, 0xf28fe6ed, 0x97f1fbfa, 0x9ebabf2c, 0x1e153c6e,
0x86e34570, 0xeae96fb1, 0x860e5e0a, 0x5a3e2ab3, 0x771fe71c, 0x4e3d06fa,
0x2965dcb9, 0x99e71d0f, 0x803e89d6, 0x5266c825, 0x2e4cc978, 0x9c10b36a,
0xc6150eba, 0x94e2ea78, 0xa5fc3c53, 0x1e0a2df4, 0xf2f74ea7, 0x361d2b3d,
0x1939260f, 0x19c27960, 0x5223a708, 0xf71312b6, 0xebadfe6e, 0xeac31f66,
0xe3bc4595, 0xa67bc883, 0xb17f37d1, 0x018cff28, 0xc332ddef, 0xbe6c5aa5,
0x65582185, 0x68ab9802, 0xeecea50f, 0xdb2f953b, 0x2aef7dad, 0x5b6e2f84,
0x1521b628, 0x29076170, 0xecdd4775, 0x619f1510, 0x13cca830, 0xeb61bd96,
0x0334fe1e, 0xaa0363cf, 0xb5735c90, 0x4c70a239, 0xd59e9e0b, 0xcbaade14,
0xeecc86bc, 0x60622ca7, 0x9cab5cab, 0xb2f3846e, 0x648b1eaf, 0x19bdf0ca,
0xa02369b9, 0x655abb50, 0x40685a32, 0x3c2ab4b3, 0x319ee9d5, 0xc021b8f7,
0x9b540b19, 0x875fa099, 0x95f7997e, 0x623d7da8, 0xf837889a, 0x97e32d77,
0x11ed935f, 0x16681281, 0x0e358829, 0xc7e61fd6, 0x96dedfa1, 0x7858ba99,
0x57f584a5, 0x1b227263, 0x9b83c3ff, 0x1ac24696, 0xcdb30aeb, 0x532e3054,
0x8fd948e4, 0x6dbc3128, 0x58ebf2ef, 0x34c6ffea, 0xfe28ed61, 0xee7c3c73,
0x5d4a14d9, 0xe864b7e3, 0x42105d14, 0x203e13e0, 0x45eee2b6, 0xa3aaabea,
0xdb6c4f15, 0xfacb4fd0, 0xc742f442, 0xef6abbb5, 0x654f3b1d, 0x41cd2105,
0xd81e799e, 0x86854dc7, 0xe44b476a, 0x3d816250, 0xcf62a1f2, 0x5b8d2646,
0xfc8883a0, 0xc1c7b6a3, 0x7f1524c3, 0x69cb7492, 0x47848a0b, 0x5692b285,
0x095bbf00, 0xad19489d, 0x1462b174, 0x23820e00, 0x58428d2a, 0x0c55f5ea,
0x1dadf43e, 0x233f7061, 0x3372f092, 0x8d937e41, 0xd65fecf1, 0x6c223bdb,
0x7cde3759, 0xcbee7460, 0x4085f2a7, 0xce77326e, 0xa6078084, 0x19f8509e,
0xe8efd855, 0x61d99735, 0xa969a7aa, 0xc50c06c2, 0x5a04abfc, 0x800bcadc,
0x9e447a2e, 0xc3453484, 0xfdd56705, 0x0e1e9ec9, 0xdb73dbd3, 0x105588cd,
0x675fda79, 0xe3674340, 0xc5c43465, 0x713e38d8, 0x3d28f89e, 0xf16dff20,
0x153e21e7, 0x8fb03d4a, 0xe6e39f2b, 0xdb83adf7
};
private static uint[] BLOWFISH_SBOX2 =
{
0xe93d5a68, 0x948140f7, 0xf64c261c, 0x94692934, 0x411520f7, 0x7602d4f7,
0xbcf46b2e, 0xd4a20068, 0xd4082471, 0x3320f46a, 0x43b7d4b7, 0x500061af,
0x1e39f62e, 0x97244546, 0x14214f74, 0xbf8b8840, 0x4d95fc1d, 0x96b591af,
0x70f4ddd3, 0x66a02f45, 0xbfbc09ec, 0x03bd9785, 0x7fac6dd0, 0x31cb8504,
0x96eb27b3, 0x55fd3941, 0xda2547e6, 0xabca0a9a, 0x28507825, 0x530429f4,
0x0a2c86da, 0xe9b66dfb, 0x68dc1462, 0xd7486900, 0x680ec0a4, 0x27a18dee,
0x4f3ffea2, 0xe887ad8c, 0xb58ce006, 0x7af4d6b6, 0xaace1e7c, 0xd3375fec,
0xce78a399, 0x406b2a42, 0x20fe9e35, 0xd9f385b9, 0xee39d7ab, 0x3b124e8b,
0x1dc9faf7, 0x4b6d1856, 0x26a36631, 0xeae397b2, 0x3a6efa74, 0xdd5b4332,
0x6841e7f7, 0xca7820fb, 0xfb0af54e, 0xd8feb397, 0x454056ac, 0xba489527,
0x55533a3a, 0x20838d87, 0xfe6ba9b7, 0xd096954b, 0x55a867bc, 0xa1159a58,
0xcca92963, 0x99e1db33, 0xa62a4a56, 0x3f3125f9, 0x5ef47e1c, 0x9029317c,
0xfdf8e802, 0x04272f70, 0x80bb155c, 0x05282ce3, 0x95c11548, 0xe4c66d22,
0x48c1133f, 0xc70f86dc, 0x07f9c9ee, 0x41041f0f, 0x404779a4, 0x5d886e17,
0x325f51eb, 0xd59bc0d1, 0xf2bcc18f, 0x41113564, 0x257b7834, 0x602a9c60,
0xdff8e8a3, 0x1f636c1b, 0x0e12b4c2, 0x02e1329e, 0xaf664fd1, 0xcad18115,
0x6b2395e0, 0x333e92e1, 0x3b240b62, 0xeebeb922, 0x85b2a20e, 0xe6ba0d99,
0xde720c8c, 0x2da2f728, 0xd0127845, 0x95b794fd, 0x647d0862, 0xe7ccf5f0,
0x5449a36f, 0x877d48fa, 0xc39dfd27, 0xf33e8d1e, 0x0a476341, 0x992eff74,
0x3a6f6eab, 0xf4f8fd37, 0xa812dc60, 0xa1ebddf8, 0x991be14c, 0xdb6e6b0d,
0xc67b5510, 0x6d672c37, 0x2765d43b, 0xdcd0e804, 0xf1290dc7, 0xcc00ffa3,
0xb5390f92, 0x690fed0b, 0x667b9ffb, 0xcedb7d9c, 0xa091cf0b, 0xd9155ea3,
0xbb132f88, 0x515bad24, 0x7b9479bf, 0x763bd6eb, 0x37392eb3, 0xcc115979,
0x8026e297, 0xf42e312d, 0x6842ada7, 0xc66a2b3b, 0x12754ccc, 0x782ef11c,
0x6a124237, 0xb79251e7, 0x06a1bbe6, 0x4bfb6350, 0x1a6b1018, 0x11caedfa,
0x3d25bdd8, 0xe2e1c3c9, 0x44421659, 0x0a121386, 0xd90cec6e, 0xd5abea2a,
0x64af674e, 0xda86a85f, 0xbebfe988, 0x64e4c3fe, 0x9dbc8057, 0xf0f7c086,
0x60787bf8, 0x6003604d, 0xd1fd8346, 0xf6381fb0, 0x7745ae04, 0xd736fccc,
0x83426b33, 0xf01eab71, 0xb0804187, 0x3c005e5f, 0x77a057be, 0xbde8ae24,
0x55464299, 0xbf582e61, 0x4e58f48f, 0xf2ddfda2, 0xf474ef38, 0x8789bdc2,
0x5366f9c3, 0xc8b38e74, 0xb475f255, 0x46fcd9b9, 0x7aeb2661, 0x8b1ddf84,
0x846a0e79, 0x915f95e2, 0x466e598e, 0x20b45770, 0x8cd55591, 0xc902de4c,
0xb90bace1, 0xbb8205d0, 0x11a86248, 0x7574a99e, 0xb77f19b6, 0xe0a9dc09,
0x662d09a1, 0xc4324633, 0xe85a1f02, 0x09f0be8c, 0x4a99a025, 0x1d6efe10,
0x1ab93d1d, 0x0ba5a4df, 0xa186f20f, 0x2868f169, 0xdcb7da83, 0x573906fe,
0xa1e2ce9b, 0x4fcd7f52, 0x50115e01, 0xa70683fa, 0xa002b5c4, 0x0de6d027,
0x9af88c27, 0x773f8641, 0xc3604c06, 0x61a806b5, 0xf0177a28, 0xc0f586e0,
0x006058aa, 0x30dc7d62, 0x11e69ed7, 0x2338ea63, 0x53c2dd94, 0xc2c21634,
0xbbcbee56, 0x90bcb6de, 0xebfc7da1, 0xce591d76, 0x6f05e409, 0x4b7c0188,
0x39720a3d, 0x7c927c24, 0x86e3725f, 0x724d9db9, 0x1ac15bb4, 0xd39eb8fc,
0xed545578, 0x08fca5b5, 0xd83d7cd3, 0x4dad0fc4, 0x1e50ef5e, 0xb161e6f8,
0xa28514d9, 0x6c51133c, 0x6fd5c7e7, 0x56e14ec4, 0x362abfce, 0xddc6c837,
0xd79a3234, 0x92638212, 0x670efa8e, 0x406000e0
};
private static uint[] BLOWFISH_SBOX3 =
{
0x3a39ce37, 0xd3faf5cf, 0xabc27737, 0x5ac52d1b, 0x5cb0679e, 0x4fa33742,
0xd3822740, 0x99bc9bbe, 0xd5118e9d, 0xbf0f7315, 0xd62d1c7e, 0xc700c47b,
0xb78c1b6b, 0x21a19045, 0xb26eb1be, 0x6a366eb4, 0x5748ab2f, 0xbc946e79,
0xc6a376d2, 0x6549c2c8, 0x530ff8ee, 0x468dde7d, 0xd5730a1d, 0x4cd04dc6,
0x2939bbdb, 0xa9ba4650, 0xac9526e8, 0xbe5ee304, 0xa1fad5f0, 0x6a2d519a,
0x63ef8ce2, 0x9a86ee22, 0xc089c2b8, 0x43242ef6, 0xa51e03aa, 0x9cf2d0a4,
0x83c061ba, 0x9be96a4d, 0x8fe51550, 0xba645bd6, 0x2826a2f9, 0xa73a3ae1,
0x4ba99586, 0xef5562e9, 0xc72fefd3, 0xf752f7da, 0x3f046f69, 0x77fa0a59,
0x80e4a915, 0x87b08601, 0x9b09e6ad, 0x3b3ee593, 0xe990fd5a, 0x9e34d797,
0x2cf0b7d9, 0x022b8b51, 0x96d5ac3a, 0x017da67d, 0xd1cf3ed6, 0x7c7d2d28,
0x1f9f25cf, 0xadf2b89b, 0x5ad6b472, 0x5a88f54c, 0xe029ac71, 0xe019a5e6,
0x47b0acfd, 0xed93fa9b, 0xe8d3c48d, 0x283b57cc, 0xf8d56629, 0x79132e28,
0x785f0191, 0xed756055, 0xf7960e44, 0xe3d35e8c, 0x15056dd4, 0x88f46dba,
0x03a16125, 0x0564f0bd, 0xc3eb9e15, 0x3c9057a2, 0x97271aec, 0xa93a072a,
0x1b3f6d9b, 0x1e6321f5, 0xf59c66fb, 0x26dcf319, 0x7533d928, 0xb155fdf5,
0x03563482, 0x8aba3cbb, 0x28517711, 0xc20ad9f8, 0xabcc5167, 0xccad925f,
0x4de81751, 0x3830dc8e, 0x379d5862, 0x9320f991, 0xea7a90c2, 0xfb3e7bce,
0x5121ce64, 0x774fbe32, 0xa8b6e37e, 0xc3293d46, 0x48de5369, 0x6413e680,
0xa2ae0810, 0xdd6db224, 0x69852dfd, 0x09072166, 0xb39a460a, 0x6445c0dd,
0x586cdecf, 0x1c20c8ae, 0x5bbef7dd, 0x1b588d40, 0xccd2017f, 0x6bb4e3bb,
0xdda26a7e, 0x3a59ff45, 0x3e350a44, 0xbcb4cdd5, 0x72eacea8, 0xfa6484bb,
0x8d6612ae, 0xbf3c6f47, 0xd29be463, 0x542f5d9e, 0xaec2771b, 0xf64e6370,
0x740e0d8d, 0xe75b1357, 0xf8721671, 0xaf537d5d, 0x4040cb08, 0x4eb4e2cc,
0x34d2466a, 0x0115af84, 0xe1b00428, 0x95983a1d, 0x06b89fb4, 0xce6ea048,
0x6f3f3b82, 0x3520ab82, 0x011a1d4b, 0x277227f8, 0x611560b1, 0xe7933fdc,
0xbb3a792b, 0x344525bd, 0xa08839e1, 0x51ce794b, 0x2f32c9b7, 0xa01fbac9,
0xe01cc87e, 0xbcc7d1f6, 0xcf0111c3, 0xa1e8aac7, 0x1a908749, 0xd44fbd9a,
0xd0dadecb, 0xd50ada38, 0x0339c32a, 0xc6913667, 0x8df9317c, 0xe0b12b4f,
0xf79e59b7, 0x43f5bb3a, 0xf2d519ff, 0x27d9459c, 0xbf97222c, 0x15e6fc2a,
0x0f91fc71, 0x9b941525, 0xfae59361, 0xceb69ceb, 0xc2a86459, 0x12baa8d1,
0xb6c1075e, 0xe3056a0c, 0x10d25065, 0xcb03a442, 0xe0ec6e0e, 0x1698db3b,
0x4c98a0be, 0x3278e964, 0x9f1f9532, 0xe0d392df, 0xd3a0342b, 0x8971f21e,
0x1b0a7441, 0x4ba3348c, 0xc5be7120, 0xc37632d8, 0xdf359f8d, 0x9b992f2e,
0xe60b6f47, 0x0fe3f11d, 0xe54cda54, 0x1edad891, 0xce6279cf, 0xcd3e7e6f,
0x1618b166, 0xfd2c1d05, 0x848fd2c5, 0xf6fb2299, 0xf523f357, 0xa6327623,
0x93a83531, 0x56cccd02, 0xacf08162, 0x5a75ebb5, 0x6e163697, 0x88d273cc,
0xde966292, 0x81b949d0, 0x4c50901b, 0x71c65614, 0xe6c6c7bd, 0x327a140a,
0x45e1d006, 0xc3f27b9a, 0xc9aa53fd, 0x62a80f00, 0xbb25bfe2, 0x35bdd2f6,
0x71126905, 0xb2040222, 0xb6cbcf7c, 0xcd769c2b, 0x53113ec0, 0x1640e3d3,
0x38abbd60, 0x2547adf0, 0xba38209c, 0xf746ce76, 0x77afa1c5, 0x20756060,
0x85cbfe4e, 0x8ae88dd8, 0x7aaaf9b0, 0x4cf9aa7e, 0x1948c25c, 0x02fb8a8c,
0x01c36ae4, 0xd6ebe1f9, 0x90d4f869, 0xa65cdea0, 0x3f09252d, 0xc208e69f,
0xb74e6132, 0xce77e25b, 0x578fdfe3, 0x3ac372e6
};
private static uint[][] BLOWFISH_STABLE = { BLOWFISH_SBOX0, BLOWFISH_SBOX1, BLOWFISH_SBOX2, BLOWFISH_SBOX3 };
#endregion BlowFish Tables
/////////////////////////////////////////////////////////////
// Structures
[StructLayout(LayoutKind.Explicit)]
struct DWORD_SPLITTER
{
/////////////////////////////////////////////////////////
// Attributes
[FieldOffset(0)]
public uint dw;
[FieldOffset(0)]
public UInt16 highWord;
[FieldOffset(2)]
public UInt16 lowWord;
[FieldOffset(0)]
public byte byte3;
[FieldOffset(1)]
public byte byte2;
[FieldOffset(2)]
public byte byte1;
[FieldOffset(3)]
public byte byte0;
/////////////////////////////////////////////////////////
// Operations
public void FromBuffer( byte[] buffer, int iOffset )
{
byte0 = buffer[iOffset];
byte1 = buffer[iOffset+1];
byte2 = buffer[iOffset+2];
byte3 = buffer[iOffset+3];
}
public void ToBuffer( byte[] buffer, int iOffset )
{
buffer[iOffset] = byte0;
buffer[iOffset+1] = byte1;
buffer[iOffset+2] = byte2;
buffer[iOffset+3] = byte3;
}
}
/////////////////////////////////////////////////////////////
// Operations
public static bool IsValidBlowFishKey(byte[] Key)
{
// Check buffer
if (Key == null)
return false;
if( (Key.Length < MIN_KEY_BYTE_LENGTH) || (Key.Length > MAX_KEY_BYTE_LENGTH) )
return false;
if((Key.Length % 4)!=0)
return false;
// Return success
return true;
}
public static byte[] CreateBlowFishKey(Random rnd,int iKeyLength)
{
// Shortcuts
if (
(iKeyLength < MIN_KEY_BYTE_LENGTH)
||
(iKeyLength > MAX_KEY_BYTE_LENGTH)
||
((iKeyLength % 4) != 0)
)
throw new Exception("Invalid BlowFish key length.");
// Declare return variable
byte[] Ftmp = new byte[iKeyLength];
// Populate the key
rnd.NextBytes(Ftmp);
// Return success
return Ftmp;
}
public static void BlowFishWithPadding(byte[] bufferIn, ref byte[] bufferOut, byte[] Key, bool bEncrypt)
{
//
// Use the same padding that .Net uses for the DES crypto-provider
//
// If encrypting...
if (bEncrypt)
{
// Create the buffer out
int iBufferOut = ((bufferIn.Length / BLOWFISH_BLOCK_LENGTH) + 1) * BLOWFISH_BLOCK_LENGTH;
_softCreateBuffer(ref bufferOut, iBufferOut);
Array.Copy(bufferIn, bufferOut, bufferIn.Length);
// Add the padding
int iPadding = bufferOut.Length - bufferIn.Length;
#if DEBUG
Debug.Assert(iPadding > 0);
Debug.Assert(iPadding <= 8);
#endif // #if DEBUG
byte Padding = Convert.ToByte(iPadding);
for (int i1 = 0; i1 < iPadding; i1++)
bufferOut[bufferIn.Length + i1] = Padding;
}
else
{
// Create the buffer out
int iBufferOut = bufferIn.Length;
_softCreateBuffer(ref bufferOut, iBufferOut);
Array.Copy(bufferIn, bufferOut, bufferIn.Length);
}
// Call sibling function
_blowFish(bufferOut, Key, bEncrypt);
// If decrypting...
if (!bEncrypt)
{
// Get the padding byte
byte Padding = bufferOut[bufferOut.Length - 1];
if ((Padding < 1) || (Padding > 8))
throw new Exception("Invalid padding in BlowFish cypher-text.");
for (byte A = 0; A < Padding; A++)
{
if(bufferOut[bufferOut.Length - 1 - A] != Padding)
throw new Exception("Invalid padding in BlowFish cypher-text.");
}
// Trim off the extra
Array.Resize(ref bufferOut, bufferOut.Length - Padding);
}
}
public static void BlowFish(byte[] bufferIn, ref byte[] bufferOut, byte[] Key, bool bEncrypt)
{
// Shortcuts
if(bufferIn == null)
throw new Exception("Invalid data into BlowFish algorithm");
if(bufferIn.Length==0)
throw new Exception("Missing data in BlowFish algorithm");
if((bufferIn.Length % BLOWFISH_BLOCK_LENGTH)!=0)
throw new Exception("Invalid length of data into BlowFish algorithm");
// check key
if(!IsValidBlowFishKey(Key))
throw new Exception("BlowFish key is invalid");
// Create the buffer-out
_softCreateBuffer(ref bufferOut, bufferIn.Length);
Array.Copy(bufferIn, bufferOut, bufferIn.Length);
// Call sibling function to apply algorithm
_blowFish(bufferOut, Key, bEncrypt);
}
public static void _blowFish(byte[] buffer, byte[] Key, bool bEncrypt)
{
#if DEBUG
Debug.Assert(buffer != null);
Debug.Assert(buffer.Length > 0);
Debug.Assert((buffer.Length % BLOWFISH_BLOCK_LENGTH) == 0);
Debug.Assert(IsValidBlowFishKey(Key));
#endif // #if DEBUG
// Declaration of local variables
DWORD_SPLITTER xl = new DWORD_SPLITTER();
DWORD_SPLITTER xr = new DWORD_SPLITTER();
byte[] PreviousBlock = new byte[8];
// Create tables
uint[] PTable;
uint[,] STable;
_createTables(Key, out PTable, out STable);
// If encrypting...
if (bEncrypt)
{
// loop through the buffer
int iBufferPos = 0;
while (iBufferPos < buffer.Length)
{
// If not the first block, xor with previous
if (iBufferPos > 0)
_xor(buffer, iBufferPos, PreviousBlock, 0, 8);
// encipher 8 byte chunk
xl.FromBuffer(buffer, iBufferPos);
xr.FromBuffer(buffer, iBufferPos + 4);
_encipher8ByteChunk(ref xl, ref xr, PTable, STable, true);
xl.ToBuffer(buffer, iBufferPos);
xr.ToBuffer(buffer, iBufferPos + 4);
// Retain this as previous block
Array.Copy(buffer, iBufferPos, PreviousBlock, 0, 8);
// move on
iBufferPos += BLOWFISH_BLOCK_LENGTH;
}
}
else
{
// loop through the buffer
int iBufferPos = 0;
byte[] CurrentBlock = new byte[8];
while (iBufferPos < buffer.Length)
{
// Retain the current raw block
Array.Copy(buffer, iBufferPos, CurrentBlock, 0, 8);
// encipher 8 byte chunk
xl.FromBuffer(buffer, iBufferPos);
xr.FromBuffer(buffer, iBufferPos + 4);
_encipher8ByteChunk(ref xl, ref xr, PTable, STable, false);
xl.ToBuffer(buffer, iBufferPos);
xr.ToBuffer(buffer, iBufferPos + 4);
// If not the first block...
if(iBufferPos > 0)
_xor(buffer, iBufferPos, PreviousBlock, 0, 8);
// Retain the previous block
Array.Copy(CurrentBlock, 0, PreviousBlock, 0, 8);
// move on
iBufferPos += BLOWFISH_BLOCK_LENGTH;
}
}
}
private static void _xor(byte[] TargetBuffer, int iTargetPos, byte[] OperatorBuffer, int iOperatorPos, int iLength)
{
// Loop through length
for (int i1 = 0; i1 < iLength; i1++)
TargetBuffer[iTargetPos + i1] ^= OperatorBuffer[iOperatorPos + i1];
}
private static void _softCreateBuffer(ref byte[] buffer, int iLength)
{
// Create or extend buffer
if (buffer == null)
buffer = new byte[iLength];
else
Array.Resize(ref buffer, iLength);
}
private static void _createTables(byte[] Key, out uint[] PTable, out uint[,] STable)
{
// declaration of local variables
int i1, i2;
// Stuff the P and S tables
PTable = new uint[BLOWFISH_PTABLE.Length];
for (i1 = 0; i1 < PTABLE_LENGTH; i1++)
{
PTable[i1] = BLOWFISH_PTABLE[i1];
}
STable = new uint[STABLE_LENGTH0,STABLE_LENGTH1];
for (i1 = 0; i1 < 4; i1++)
{
for (i2 = 0; i2 < 256; i2++)
STable[i1, i2] = BLOWFISH_STABLE[i1][i2];
}
// update the P-Table
int iKeyPos = 0;
DWORD_SPLITTER dw = new DWORD_SPLITTER();
for( i1=0; i1 < PTABLE_LENGTH; ++i1 )
{
// compose word
dw.dw = 0;
dw.byte0 = Key[iKeyPos];
dw.byte1 = Key[(iKeyPos + 1) % Key.Length];
dw.byte2 = Key[(iKeyPos + 2) % Key.Length];
dw.byte3 = Key[(iKeyPos + 3) % Key.Length];
uint data = dw.dw;
// update P-Table
PTable[i1] = PTable[i1] ^ data;
// increment position
iKeyPos = (iKeyPos + 4) % Key.Length;
}
// encipher P-Table values
DWORD_SPLITTER Left = new DWORD_SPLITTER();
DWORD_SPLITTER Right = new DWORD_SPLITTER();
for( i1=0; i1<PTABLE_LENGTH; i1+=2 )
{
// encipher
_encipher8ByteChunk(ref Left, ref Right, PTable, STable, true);
// update P-Table
PTable[i1] = Left.dw;
PTable[i1 + 1] = Right.dw;
}
// encipher the S-Table values
for( i1=0; i1<4; ++i1 )
{
for( i2=0; i2<256; i2+=2 )
{
// encipher
_encipher8ByteChunk(ref Left, ref Right, PTable, STable, true);
// update S-Table
STable[i1,i2] = Left.dw;
STable[i1,i2 + 1] = Right.dw;
}
}
}
private static void _encipher8ByteChunk(ref DWORD_SPLITTER xl, ref DWORD_SPLITTER xr, uint[] PTable, uint[,] STable, bool bEncrypt)
{
// If encrypting...
if(bEncrypt)
{
xl.dw ^= PTable[0];
xr.dw ^= _f(xl,STable) ^ PTable[1]; xl.dw ^= _f(xr, STable) ^ PTable[2];
xr.dw ^= _f(xl,STable) ^ PTable[3]; xl.dw ^= _f(xr, STable) ^ PTable[4];
xr.dw ^= _f(xl,STable) ^ PTable[5]; xl.dw ^= _f(xr, STable) ^ PTable[6];
xr.dw ^= _f(xl,STable) ^ PTable[7]; xl.dw ^= _f(xr, STable) ^ PTable[8];
xr.dw ^= _f(xl,STable) ^ PTable[9]; xl.dw ^= _f(xr, STable) ^ PTable[10];
xr.dw ^= _f(xl,STable) ^ PTable[11]; xl.dw ^= _f(xr, STable) ^ PTable[12];
xr.dw ^= _f(xl,STable) ^ PTable[13]; xl.dw ^= _f(xr, STable) ^ PTable[14];
xr.dw ^= _f(xl,STable) ^ PTable[15]; xl.dw ^= _f(xr, STable) ^ PTable[16];
xr.dw ^= PTable[17];
}
else
{
xl.dw ^= PTable[17];
xr.dw ^= _f(xl,STable) ^ PTable[16]; xl.dw ^= _f(xr, STable) ^ PTable[15];
xr.dw ^= _f(xl,STable) ^ PTable[14]; xl.dw ^= _f(xr, STable) ^ PTable[13];
xr.dw ^= _f(xl,STable) ^ PTable[12]; xl.dw ^= _f(xr, STable) ^ PTable[11];
xr.dw ^= _f(xl,STable) ^ PTable[10]; xl.dw ^= _f(xr, STable) ^ PTable[9];
xr.dw ^= _f(xl,STable) ^ PTable[8]; xl.dw ^= _f(xr, STable) ^ PTable[7];
xr.dw ^= _f(xl,STable) ^ PTable[6]; xl.dw ^= _f(xr, STable) ^ PTable[5];
xr.dw ^= _f(xl,STable) ^ PTable[4]; xl.dw ^= _f(xr, STable) ^ PTable[3];
xr.dw ^= _f(xl,STable) ^ PTable[2]; xl.dw ^= _f(xr, STable) ^ PTable[1];
xr.dw ^= PTable[0];
}
// Swap over xl and xr
uint dwTemp = xl.dw;
xl.dw = xr.dw;
xr.dw = dwTemp;
}
private static uint _f(DWORD_SPLITTER x, uint[,] STable)
{
return (((STable[0, x.byte0] + STable[1, x.byte1]) ^ STable[2, x.byte2]) + STable[3, x.byte3]);
}
/////////////////////////////////////////////////////////////
// Operations - Debug
#region Test Vectors
#if DEBUG
// Test Keys
private static ulong[] TestKeys = {
0x0000000000000000,
0xFFFFFFFFFFFFFFFF,
0x3000000000000000,
0x1111111111111111,
0x0123456789ABCDEF,
0x1111111111111111,
0x0000000000000000,
0xFEDCBA9876543210,
0x7CA110454A1A6E57,
0x0131D9619DC1376E,
0x07A1133E4A0B2686,
0x3849674C2602319E,
0x04B915BA43FEB5B6,
0x0113B970FD34F2CE,
0x0170F175468FB5E6,
0x43297FAD38E373FE,
0x07A7137045DA2A16,
0x04689104C2FD3B2F,
0x37D06BB516CB7546,
0x1F08260D1AC2465E,
0x584023641ABA6176,
0x025816164629B007,
0x49793EBC79B3258F,
0x4FB05E1515AB73A7,
0x49E95D6D4CA229BF,
0x018310DC409B26D6,
0x1C587F1C13924FEF,
0x0101010101010101,
0x1F1F1F1F0E0E0E0E,
0xE0FEE0FEF1FEF1FE,
0x0000000000000000,
0xFFFFFFFFFFFFFFFF,
0x0123456789ABCDEF,
0xFEDCBA9876543210
};
private static ulong[] TestPlainText = {
0x0000000000000000,
0xFFFFFFFFFFFFFFFF,
0x1000000000000001,
0x1111111111111111,
0x1111111111111111,
0x0123456789ABCDEF,
0x0000000000000000,
0x0123456789ABCDEF,
0x01A1D6D039776742,
0x5CD54CA83DEF57DA,
0x0248D43806F67172,
0x51454B582DDF440A,
0x42FD443059577FA2,
0x059B5E0851CF143A,
0x0756D8E0774761D2,
0x762514B829BF486A,
0x3BDD119049372802,
0x26955F6835AF609A,
0x164D5E404F275232,
0x6B056E18759F5CCA,
0x004BD6EF09176062,
0x480D39006EE762F2,
0x437540C8698F3CFA,
0x072D43A077075292,
0x02FE55778117F12A,
0x1D9D5C5018F728C2,
0x305532286D6F295A,
0x0123456789ABCDEF,
0x0123456789ABCDEF,
0x0123456789ABCDEF,
0xFFFFFFFFFFFFFFFF,
0x0000000000000000,
0x0000000000000000,
0xFFFFFFFFFFFFFFFF
};
private static ulong[] TestCypherText = {
0x4EF997456198DD78,
0x51866FD5B85ECB8A,
0x7D856F9A613063F2,
0x2466DD878B963C9D,
0x61F9C3802281B096,
0x7D0CC630AFDA1EC7,
0x4EF997456198DD78,
0x0ACEAB0FC6A0A28D,
0x59C68245EB05282B,
0xB1B8CC0B250F09A0,
0x1730E5778BEA1DA4,
0xA25E7856CF2651EB,
0x353882B109CE8F1A,
0x48F4D0884C379918,
0x432193B78951FC98,
0x13F04154D69D1AE5,
0x2EEDDA93FFD39C79,
0xD887E0393C2DA6E3,
0x5F99D04F5B163969,
0x4A057A3B24D3977B,
0x452031C1E4FADA8E,
0x7555AE39F59B87BD,
0x53C55F9CB49FC019,
0x7A8E7BFA937E89A3,
0xCF9C5D7A4986ADB5,
0xD1ABB290658BC778,
0x55CB3774D13EF201,
0xFA34EC4847B268B2,
0xA790795108EA3CAE,
0xC39E072D9FAC631D,
0x014933E0CDAFF6E4,
0xF21E9A77B71C49BC,
0x245946885754369A,
0x6B5C5A9C5D9E0A5A
};
#endif // #if DEBUG
#endregion Test Vectors
#if DEBUG
#if !SILVERLIGHT
public static void _assertBufferMatch(byte[] A, byte[] B)
{
// Compare outputs
Debug.Assert(A.Length == B.Length);
for (int iOffset = 0; iOffset < A.Length; iOffset++)
Debug.Assert(A[iOffset] == B[iOffset]);
}
#endif // #if !SILVERLIGHT
#endif // #if DEBUG
#if DEBUG
public static void Test()
{
// Declaration of local variables
Random rnd = new Random(1);
byte[] Key = null;
byte[] bufferIn = null;
byte[] bufferOut = null;
byte[] bufferReturned = null;
// Loop through the test vectors
for (int iTest = 0; iTest < TestKeys.Length; iTest++)
{
// Load the key and plain-text
Key = BitConverter.GetBytes(TestKeys[iTest]).Reverse().ToArray();
bufferIn = BitConverter.GetBytes(TestPlainText[iTest]).Reverse().ToArray();
// Encrypt with BlowFish
BlowFishCrytography.BlowFish(bufferIn, ref bufferOut, Key, true);
// Compare with expected result
byte[] expectedBufferOut = BitConverter.GetBytes(TestCypherText[iTest]).Reverse().ToArray();
_assertBufferMatch(expectedBufferOut,bufferOut);
}
// Loop through decrypt-encrypt tests
for (int iTest = 0; iTest < 100*1000; iTest++)
{
// Dump progress
if ((iTest % 100) == 0)
Trace.TraceInformation("Test {0}", iTest);
// Load the key and plain-text
Key = CreateBlowFishKey(rnd, MAX_KEY_BYTE_LENGTH);
// Create a buffer of data
int iLength = rnd.Next(1, 10*1024);
_softCreateBuffer(ref bufferIn, iLength);
rnd.NextBytes(bufferIn);
// Encrypt with BlowFish
BlowFishCrytography.BlowFishWithPadding(bufferIn, ref bufferOut, Key, true);
// Decrypt with BlowFish
BlowFishCrytography.BlowFishWithPadding(bufferOut, ref bufferReturned, Key, false);
// Compare buffers
_assertBufferMatch(bufferIn, bufferReturned);
}
}
#endif // #if DEBUG
}
}