[luogu2059 JLOI2013] 卡牌游戏 (概率dp)
题目描述
N个人坐成一圈玩游戏。一开始我们把所有玩家按顺时针从1到N编号。首先第一回合是玩家1作为庄家。每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X,则庄家首先把卡片上的数字向所有玩家展示,然后按顺时针从庄家位置数第X个人将被处决即退出游戏。然后卡片将会被放回卡牌堆里并重新洗牌。被处决的人按顺时针的下一个人将会作为下一轮的庄家。那么经过N-1轮后最后只会剩下一个人,即为本次游戏的胜者。现在你预先知道了总共有M张卡片,也知道每张卡片上的数字。现在你需要确定每个玩家胜出的概率。
这里有一个简单的例子:
例如一共有4个玩家,有四张卡片分别写着3,4,5,6.
第一回合,庄家是玩家1,假设他选择了一张写着数字5的卡片。那么按顺时针数1,2,3,4,1,最后玩家1被踢出游戏。
第二回合,庄家就是玩家1的下一个人,即玩家2.假设玩家2这次选择了一张数字6,那么2,3,4,2,3,4,玩家4被踢出游戏。
第三回合,玩家2再一次成为庄家。如果这一次玩家2再次选了6,则玩家3被踢出游戏,最后的胜者就是玩家2.
输入输出格式
输入格式:
第一行包括两个整数N,M分别表示玩家个数和卡牌总数。
接下来一行是包含M个整数,分别给出每张卡片上写的数字。
输出格式:
输出一行包含N个百分比形式给出的实数,四舍五入到两位小数。分别给出从玩家1到玩家N的胜出概率,每个概率之间用空格隔开,最后不要有空格。
输入输出样例
输入样例#1:
5 5
2 3 5 7 11
输出样例#1:
22.72% 17.12% 15.36% 25.44% 19.36%
输入样例#2:
4 4
3 4 5 6
输出样例#2:
25.00% 25.00% 25.00% 25.00%
说明
对于30%的数据,有1<=N<=10
对于50%的数据,有1<=N<=30
对于100%的数据,有1<=N<=50 1<=M<=50 1<=每张卡片上的数字<=50
dp[i][j] 表示有i个人时j的存活概率
枚举使用哪张牌,算出走的步数tp
那么显然有
if(tp>j) dp[i][j]+=dp[i-1][i+j-tp]/m;
if(tp<j) dp[i][j]+=dp[i-1][j-tp]/m;
code:
//By Menteur_Hxy
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <map>
#include <vector>
#include <queue>
#include <set>
#include <ctime>
#define M(a,b) memset(a,(b),sizeof(a))
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
#define LL long long
using namespace std;
inline LL rd() {
LL x=0,fla=1; char c=' ';
while(c>'9'|| c<'0') {if(c=='-') fla=-fla; c=getchar();}
while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
return x*fla;
}
inline void out(LL x){
int a[25],wei=0;
if(x<0) putchar('-'),x=-x;
for(;x;x/=10) a[++wei]=x%10;
if(wei==0){ puts("0"); return;}
for(int j=wei;j>=1;--j) putchar('0'+a[j]);
putchar('\n');
}
const int N=60;
const int INF=0x3f3f3f3f;
int n,m;
int da[N];
double dp[N][N];
int main() {
n=rd();m=rd();
F(i,1,m) da[i]=rd();
dp[1][1]=1.0;
F(i,2,n) F(j,1,n) F(k,1,m) {
int tp=da[k]%i;
if(tp==0) tp=i;
if(tp>j) dp[i][j]+=dp[i-1][i-tp+j]/m;
else if(tp<j) dp[i][j]+=dp[i-1][j-tp]/m;
}
F(i,1,n) printf("%.2lf%% ",dp[n][i]*100.0);
return 0;
}