BZOJ5210 最大连通子块和 【树链剖分】【堆】【动态DP】

题目分析:

解决了上次提到的《切树游戏》后,这道题就是一道模板题。

注意我们需要用堆维护子重链的最大值。这样不会使得复杂度变坏,因为每个重链我们只考虑一个点。

时间复杂度$O(nlog^2n)$

代码:

  1 #include<bits/stdc++.h>
  2 using namespace std;
  3 
  4 typedef long long ll;
  5 
  6 const int maxn = 202000;
  7 
  8 int n,m;
  9 int v[maxn];
 10 vector<int> g[maxn];
 11 int fa[maxn],dep[maxn],sz[maxn],son[maxn],top[maxn],tail[maxn];
 12 int where[maxn],number[maxn],num;
 13 ll TOT[maxn];
 14 
 15 struct Priority_queue{
 16     priority_queue <ll,vector<ll>,less<ll> > pq,del;
 17     void Insert(ll now){pq.push(now);}
 18     void Erase(ll now){del.push(now);}
 19     ll Top(){
 20     while(!del.empty()&&pq.top() == del.top()) pq.pop(),del.pop();
 21     return pq.top();
 22     }
 23     int Size(){return pq.size()-del.size();}
 24 }PQ[maxn];
 25 
 26 struct node{ll L,R,D,C;}T[maxn<<2];
 27 
 28 void push_up(int now){
 29     T[now].L = max(T[now<<1].L,T[now<<1].C+T[now<<1|1].L);
 30     T[now].R = max(T[now<<1|1].R,T[now<<1|1].C+T[now<<1].R);
 31     T[now].D = max(max(T[now<<1].D,T[now<<1|1].D),T[now<<1].R+T[now<<1|1].L);
 32     T[now].C = T[now<<1].C+T[now<<1|1].C; 
 33 }
 34 
 35 node merge(node alpha,node beta){
 36     node gamma; gamma.L = max(alpha.L,alpha.C+beta.L);
 37     gamma.R = max(beta.R,beta.C+alpha.R);
 38     gamma.D = max(max(alpha.D,beta.D),alpha.R+beta.L);
 39     gamma.C = alpha.C+beta.C;
 40     return gamma;
 41 }
 42 
 43 char readchar(){
 44     char ch = getchar(); while(ch != 'M' && ch != 'Q') ch = getchar();
 45     return ch;
 46 }
 47 
 48 void read(){
 49     scanf("%d%d",&n,&m);
 50     for(int i=1;i<=n;i++) scanf("%d",&v[i]);
 51     for(int i=1;i<n;i++){
 52     int x,y; scanf("%d%d",&x,&y);
 53     g[x].push_back(y); g[y].push_back(x);
 54     }
 55 }
 56 
 57 void dfs1(int now,int f,int dp){
 58     fa[now] = f; dep[now] = dp;
 59     for(int i=0;i<g[now].size();i++){
 60     if(g[now][i] == f) continue;
 61     dfs1(g[now][i],now,dp+1);
 62     sz[now] += sz[g[now][i]];
 63     if(son[now]==0||sz[son[now]]<sz[g[now][i]])son[now]=g[now][i];
 64     }
 65     sz[now]++;
 66     if(son[now]) tail[now] = tail[son[now]];
 67     else tail[now] = now;
 68 }
 69 
 70 void dfs2(int now,int tp){
 71     top[now] = tp;number[now] = ++num; where[num] = now;
 72     if(son[now]) dfs2(son[now],tp);
 73     for(int i=0;i<g[now].size();i++){
 74     if(g[now][i] == fa[now] || g[now][i] == son[now]) continue;
 75     dfs2(g[now][i],g[now][i]);
 76     }
 77 }
 78 
 79 void Modify(int now,int tl,int tr,int place){
 80     if(tl == tr){
 81     tl = where[tl];
 82     T[now].C = TOT[tl] + v[tl];
 83     T[now].L = max(0ll,TOT[tl]+v[tl]); T[now].R = T[now].L;
 84     if(PQ[tl].Size()) T[now].D = max(PQ[tl].Top(),T[now].L);
 85     else T[now].D = T[now].L;
 86     }else{
 87     int mid = (tl+tr)/2;
 88     if(place <= mid) Modify(now<<1,tl,mid,place);
 89     else Modify(now<<1|1,mid+1,tr,place);
 90     push_up(now);
 91     }
 92 }
 93 
 94 node Query(int now,int tl,int tr,int l,int r){
 95     if(tl >= l && tr <= r) return T[now];
 96     int mid = (tl+tr)/2;
 97     if(r <= mid) return Query(now<<1,tl,mid,l,r);
 98     if(l > mid) return Query(now<<1|1,mid+1,tr,l,r);
 99     return merge(Query(now<<1,tl,mid,l,r),Query(now<<1|1,mid+1,tr,l,r));
100 }
101 
102 void dfs3(int now){
103     if(son[now]) dfs3(son[now]);
104     for(int i=0;i<g[now].size();i++){
105     int mp = g[now][i];
106     if(mp == fa[now] || mp == son[now]) continue;
107     dfs3(mp);
108     PQ[now].Insert(Query(1,1,n,number[mp],number[tail[mp]]).D);
109     }
110     Modify(1,1,n,number[now]);
111     if(top[now] == now){
112     long long data = Query(1,1,n,number[now],number[tail[now]]).L;
113     if(data > 0 && fa[now]) TOT[fa[now]]+=data; 
114     }
115 }
116 
117 void work(){
118     dfs1(1,0,1);
119     dfs2(1,1);
120     dfs3(1);
121     for(int i=1;i<=m;i++){
122     char ch = readchar();
123     if(ch == 'M'){
124         int x,y; scanf("%d%d",&x,&y);
125         stack<int> sta; int now = top[x];
126         while(fa[now]) sta.push(now),now = top[fa[now]];
127         while(!sta.empty()){
128         int mp = sta.top();sta.pop();
129         node res = Query(1,1,n,number[mp],number[tail[mp]]);
130         PQ[fa[mp]].Erase(res.D);
131         if(res.L > 0) TOT[fa[mp]]-=res.L;
132         Modify(1,1,n,number[fa[mp]]);
133         }
134         now = x; v[x] = y;
135         while(now){
136         Modify(1,1,n,number[now]);
137         now = top[now];
138         node res = Query(1,1,n,number[now],number[tail[now]]);
139         if(res.L > 0 && fa[now]) TOT[fa[now]]+=res.L;
140         PQ[fa[now]].Insert(res.D);
141         now= fa[now];
142         }
143     }else{
144         int x; scanf("%d",&x);
145         long long ans = Query(1,1,n,number[x],number[tail[x]]).D;
146         printf("%lld\n",ans);
147     }
148     }
149 }
150 
151 int main(){
152     read();
153     work();
154     return 0;
155 }

 

posted @ 2018-06-10 16:01  menhera  阅读(196)  评论(0编辑  收藏  举报