[CF1076E]Vasya and a Tree
题目大意:给定一棵以$1$为根的树,$m$次操作,第$i$次为对以$v_i$为根的深度小于等于$d_i$的子树的所有节点权值加$x_i$。最后输出每个节点的值
题解:可以把操作离线,每次开始遍历到一个节点,把以它为根的操作加上,结束时把这个点的操作删去。
因为是$dfs$,所以一个点对同一深度的贡献是一定的,可以用树状数组区间加减,求前缀和。但是因为是$dfs$,完全可以把前缀和传入,就不需要树状数组了。
卡点:无
C++ Code:
#include <cstdio> #include <vector> #include <cctype> namespace __IO { namespace R { int x, ch; inline int read() { ch = getchar(); while (isspace(ch)) ch = getchar(); for (x = ch & 15, ch = getchar(); isdigit(ch); ch = getchar()) x = x * 10 + (ch & 15); return x; } } } using __IO::R::read; #define maxn 300010 int head[maxn], cnt; struct Edge { int to, nxt; } e[maxn << 1]; inline void add(int a, int b) { e[++cnt] = (Edge) {b, head[a]}; head[a] = cnt; } int n, m; struct Modify { int d, x; inline Modify() {} inline Modify(int __d, int __x) :d(__d), x(__x){} }; std::vector<Modify> S[maxn]; long long pre[maxn], ans[maxn]; void dfs(int u, int fa = 0, int dep = 0, long long sum = 0) { for (std::vector<Modify>::iterator it = S[u].begin(); it != S[u].end(); it++) { pre[dep] += it -> x; if (dep + it -> d + 1 <= n) pre[dep + it -> d + 1] -= it -> x; } sum += pre[dep]; ans[u] = sum; for (int i = head[u]; i; i = e[i].nxt) { int v = e[i].to; if (v != fa) dfs(v, u, dep + 1, sum); } for (std::vector<Modify>::iterator it = S[u].begin(); it != S[u].end(); it++) { pre[dep] -= it -> x; if (dep + it -> d + 1 <= n) pre[dep + it -> d + 1] += it -> x; } } int main() { n = read(); for (int i = 1, a, b; i < n; i++) { a = read(), b = read(); add(a, b); add(b, a); } m = read(); for (int i = 1, v, d, x; i <= m; i++) { v = read(), d = read(), x = read(); S[v].push_back(Modify(d, x)); } dfs(1); for (int i = 1; i <= n; i++) { printf("%lld", ans[i]); putchar(i == n ? '\n' : ' '); } return 0; }